﻿ 砰击作用下船用铝合金板架的瞬态动力响应参数分析
 舰船科学技术  2019, Vol. 41 Issue (2): 45-49 PDF

Parameter analysis of transient dynamic response of aluminum alloy plate frame under slamming
LU Qing-liang, WU Fan, HUA Lin
Naval University of Engineering, Department of Naval Architecture, Wuhan 430033, China
Abstract: In order to analyze the dynamic response law of Aluminum Alloy Aluminum Alloy plate frame structure under slamming loads, and determine the parameters in the calculation, using a ship Aluminum Alloy plate frame as the research object, using Patran/Nastran nonlinear transient response analysis, firstly analyzes the damping effect and strain rate effect, after that, the actual slamming load is simplified as a triangular slamming load proposed by Ochi. Finally, the influence of the peak emergence time and the number of consecutive slamming on the transient response of the frame is analyzed. The simulation results show that in the Aluminum Alloy plate frame transient response calculation, material damping and strain rate have little influence;The peak time is early, the greater the deformation of plate frame;And frame deformation increases with the number of impact, but tends to be stable after the third. The results obtained in this paper can be used as a reference for slamming dynamic response analysis of aluminum alloy hull structures.
Key words: slamming     aluminum alloy     strain rate     transient response
0 引　言

1 计算模型的建立 1.1 板架模型

 图 1 单跨三纵骨板架几何模型 Fig. 1 The plate geometric model of single span with three vertical bone
1.2 阻尼效应及应变率效应参数 1.2.1 阻尼效应参数

1.2.2 应变率效应参数

 ${\sigma _d} = {\sigma _0}\left[ {1 + {{\left( {\frac{{\dot \varepsilon }}{D}} \right)}^{1/n}}} \right]{\text{。}}$

 $\ln \dot \varepsilon = \ln D + n \cdot \ln \left( {\frac{{{\sigma _y}}}{{{\sigma _0}}} - 1} \right){\text{。}}$

1.3 砰击载荷

 图 2 真实砰击载荷 Fig. 2 True slamming load
2 阻尼效应及应变率效应分析

2.1 瞬态响应仿真验证

 $\left[ { M} \right]\left\{ {{{\ddot u}_{(t)}}} \right\} + \left[ { B} \right]\left\{ {{{\dot u}_{(t)}}} \right\} + \left[ { K} \right]\left\{ {{u_{(t)}}} \right\} = \left\{ {{P_{(t)}}} \right\}{\text{，}}$

 图 3 钢质方板的瞬态响应分析 Fig. 3 Transient response analysis of steel square plate

2.2 阻尼的影响

 图 4 阻尼对板架瞬态响应的影响 Fig. 4 Influence of damping on transient response of frame

2.3 应变率的影响

 图 5 应变率对板架瞬态响应的影响 Fig. 5 Effect of strain rate on transient response of plate

3 铝合金板架的砰击响应规律 3.1 载荷峰值出现时间对结构响应的影响

 图 7 不同载荷作用下结构响应 Fig. 7 Response of structures under different loads

3.2 连续载荷作用下的结构响应

 图 8 三次连续砰击载荷 Fig. 8 Three consecutive Slamming Loads

4 结　语

1）在对铝合金板架进行瞬态响应分析时，可以不考虑应阻尼和应变率效应。

2）在峰值出现时间越早三角形载荷作用下的板架发生的最大变形越大，永久变形也越大。

3）连续砰击作用下板架的最大变形会增大，永久变形也会增大，在船舶航行时，应避免连续砰击的发生，以减少砰击对结构造成的损伤。

4）板架的在第3次砰击后变形趋于稳定，在对船体进行砰击强度计算时，需要对前3次砰击下的结构响应进行分析。

 [1] 高宁, 朱志武. 5083铝合金宽应变率实验与基于损伤的本构模型研究[J]. 高压物理学报, 2017(1): 51-60. [2] MARCINB C, STANISZEWSKI. Simulation of tri-axially braided composites half-cylinder behavior during balistic impact[J]. Anesthesiology, 2007, 94(5): 790-792.2007. [3] 夏齐强, 陈志坚. 波浪载荷与砰击载荷联合作用下SWATH船结构动态响应[J]. 上海交通大学学报, 2012(3): 352-357. DOI:10.3969/j.issn.1674-8115.2012.03.025 [4] 邹勇, 张佳宁, 郑镜华, 等. 砰击载荷对大型铝合金船舶结构强度的影响[J]. 大连海事大学学报, 2014(1): 45-48. DOI:10.3969/j.issn.1006-7736.2014.01.012 [5] ROBERT K GOLDBERG, BRINA J BLINZLER, WIESLAW K. BINIENDA.. Modification of a macromechanical finite element–based model for impact analysis of triaxially braided composites[J]. Journal of Aerospace Engineering, 2012, 25(3): 383-394. DOI:10.1061/(ASCE)AS.1943-5525.0000135 [6] 王誉瑾, 钱宏亮, 范峰. 结构用铝合金6082-T6材料本构关系及力学参数试验研究[J]. 工程力学, 2013(S1): 309-313+319. [7] 张世联, 王能扬, 肖熙. 砰击载荷作用下板结构动力响应的参数分析[J]. 上海交通大学学报, 2001(4): 562-564. DOI:10.3321/j.issn:1006-2467.2001.04.019 [8] 杨旭东, 张世联. 有限元分析结构瞬态响应中的结构阻尼问题[J]. 中国海洋平台, 2004(2): 32-36. [9] 张云峰. 6082-T6铝合金材料力学性能研究[J]. 科技创新与应用, 2016(33): 5-6. [10] 任慧龙, 翟帅帅, 于鹏垚, 等. 砰击载荷作用下船艏结构瞬态响应研究[J]. 中国舰船研究, 2013(6): 14-19. [11] 戴仰山, 沈进威, 宋竞正.船舶波浪载荷[M].北京: 国防工业出版社, 2007. [12] 祝伟, 刘敬喜. 爆炸冲击载荷下加筋板塑性动力响应分析[J]. 船海工程, 2011(6): 28-30. DOI:10.3963/j.issn.1671-7953.2011.06.008 [13] OCHI M.K, MOTTER L.E. Prediction of slamming characteristics and hull responses for ship design[J]. Transactions SNAME, 1973, 81: 144-177.