﻿ 一种新型船舶风光互补发电系统的配置方法
 舰船科学技术  2019, Vol. 41 Issue (1): 107-110 PDF

1. 大连海事大学 轮机工程学院，辽宁 大连 116026;
2. 青岛远洋船员职业学院 机电系，山东 青岛 266071

Configuration method of marine wind solar hybrid power generation system
MA Chuan1,2, ZHANG Qin-jin1, LIU Yan-cheng1
1. Dalian Maritime University, Dalian 116026, China;
2. Qingdao Shipping Mariner's College, Qingdao 266071, China
Abstract: Wind and solar energy and other clean energy as an auxiliary power generation has been more and more applied to the ship. In the design of the wind and solar complementary power generation system, traditional experience is often used to optimize the quantity and cost of the wind turbine, solar panels and batteries. In order to be more accurate in the configuration between the various parts of the system, from the point of view of cost savings, The mathematical model of wind turbine and solar panel is established, and the genetic algorithm is used to optimize the number and parameters of each component of the wind solar hybrid power generation system. And the optimal configuration algorithm is simulated and verified. It greatly improves the efficiency of the system, saves the initial cost and maintenance cost and provides an effective solution for the design of the hybrid system.
Key words: solar-wind hybrid     configuration optimization     auxiliary power     genetic algorithm
0 引　言

1 船舶风光互补辅助发电的优势及结构 1.1 风光互补辅助发电的优势

1.2 风光互补辅助发电系统的结构及配置

 图 1 风光互补辅助发电系统结构 Fig. 1 Structure of wind solar hybrid power generation system
2 系统各部件的数学模型 2.1 风力发电机模型建立

 $P = \frac{1}{2}\rho {v^3}S{C_{{p}}}{\text{。}}$ (1)

 $\lambda = \frac{{2\pi R{{n}}}}{{60v}} = \frac{{\omega R}}{v}\text{。}$ (2)

 ${P_{{m}}} = 0.5{v^3}\pi {R^2}f(\frac{{\omega R}}{v})\rho \text{。}$ (3)
2.2 光伏电池模型建立

 ${I_L} = {I_{sc}} - {I_O}\{ \exp [\frac{{q(V + {R_S}I)}}{{nKT}}] - 1\} \text{。}$ (4)

①设最大功率点V=VmI=IL，式（4）可简化为

 ${I_{{m}}} = {I_{sc}} - {I_0}\{ \exp [\frac{{q({V_m} + I{R_S})}}{{nKT}}] - 1\} \text{；}$ (5)

②对开路，有V=VOCI=0，式（4）可简化为

 $0 = {I_{{{sc}}}} - {I_0}\{ \exp [\frac{{q({V_{OC}} + I{R_S})}}{{nKT}}] - 1\} \text{。}$ (6)

 $\begin{split} {I_L} =& {I_{{{sc}}}}\left\{ {1 - \left( {1 - \frac{{{I_m}}}{{{I_{sc}}}}} \right)\exp \left[ { - \frac{{{V_m}}}{{{V_{OC}}(\frac{{{V_m}}}{{{V_{OC}}}} - 1)\frac{1}{{\ln (1 - {I_{{m}}}/{I_{sc}})}}}}} \right]}\times \!\!\!\right.\!\!\!\!\!\!\!\!\!\!\!\\ &\left. {\left[ {\exp \frac{V}{{{V_{OC}}\left( {\frac{{{V_m}}}{{{V_{OC}}}} - 1} \right)\frac{1}{{\ln (1 - {I_m}/I_{sc}^{})}}}}} \right]} \right\}\text{。} \end{split}$ (7)

 $\begin{split} &{A_1} = (\frac{{{V_m}}}{{{V_{OC}}}} - 1){[\ln (1 - \frac{{{I_m}}}{{I_{sc}^{}}})]^{ - 1}}\text{，}\\ &{A_2} = (1 - \frac{{{I_{\rm{m}}}}}{{{I_{sc}}}})\exp [\frac{{ - {V_m}}}{{({A_1}{V_{OC}})}}]\text{。}\end{split}$ (8)

 $I = {I_{{{sc}}}}\{ 1 - {A_2}[\exp (\frac{{V - DV}}{{{A_1}{V_{OC}}}}) - 1]\} + DI\text{。}$ (9)

 $\begin{split} &DV = - \beta DT - {R_S}DI \text{，}\;\;\; \\ &DI = \alpha \frac{R}{{{R_{ref}}}}DT + (\frac{R}{{{R_{ref}}}} - 1){I_{sc}}\text{。} \end{split}$ (10)

3 风光互补辅助发电系统的优化配置

3.1 最小成本的系统目标函数确立

 $\min \{ J(X)\} = \min \{ {C_c}(x) + {C_m}(x)\} \text{，}$ (11)

3.2 适应度函数和约束条件的确定

 $\begin{split} F({N_{PV}},{N_{WG}},{N_{BAT}},{N_{Dsl}},{N_{Ch}},h,\beta )=\\ \left\{ {\begin{array}{*{20}{c}} {{c_{\max }} - J(x)}&{J(x) < {c_{\max }}}\text{，}\\ 0&{\text{其他值}}\text{。} \end{array}} \right. \end{split}$ (12)

 $\left\{ \begin{array}{l} {N_D} \geqslant 0\text{，}\\ h \in [{h_{\min }},{h_{\max }}]\text{，}\\ \beta \in [0,90)]\text{。} \end{array} \right.$ (13)

 $\sum\limits_{}^{} {{P_D}} {N_D} \geqslant {P_{load}} \;\;\; {N_{Ba}}{P_{Ba}} \geqslant da{y_{allow}}{P_{load}}\text{，}$ (14)

 ${{LOLP}} \in {{[0,LOL}}{{\rm{P}}_{{\rm{max}}}}{\rm{]}}\text{，}$ (15)

LOLP同时兼顾了蓄电池深度放电限制和系统负载缺电率2个约束条件。

 $\begin{array}{l} {P_{\rm{c}}} = \left\{ {\begin{array}{*{20}{c}} {{P_{c1}} - \frac{{({P_{c1}} - {P_{c2}})(f - {f_{avg}})}}{{{f_{\max }} - {f_{avg}}}}} & {{f^{'}} \geqslant {f_{avg}}}\text{，}\\ {{P_{c1}}} & {{f^{'}} < {f_{avg}}}\text{；} \end{array}} \right.\\ {P_{\rm{m}}} = \left\{ {\begin{array}{*{20}{c}} {{P_{m1}} - \frac{{({P_{m1}} - {P_{m2}})(f - {f_{avg}})}}{{{f_{\max }} - {f_{avg}}}}} & {{f^{'}} \geqslant {f_{avg}}}\text{，}\\ {{P_{m1}}} & {{f^{'}} < {f_{avg}}}\text{。} \end{array}} \right. \end{array}$ (16)

4 仿真验证

 图 2 改进遗传算法仿真结果 Fig. 2 Simulation results of Improved genetic algorithm
5 结　语

 [1] 孙小明. 小型船舶风光柴蓄混合发电系统优化配置研究[D]. 大连: 大连海事大学, 2010. [2] 孙玉伟, 严新平, 袁成清, 等. 离网型太阳能光伏系统在内河滚装船上的应用[J]. 船舶工程, 2016(8): 22-26. SUN Yu-wei, YAN Xin-ping, YUAN Cheng-qing, et al. Application of solar photovoltaic off-grid system on inland ro-ro ship[J]. Ship Engineering, 2016(8): 22-26. [3] VIKAS K, SAVITA N, PRASHANT B. Solar-wind hybrid renewable energy system: A review[J]. ELSEVIER, 2016(58): 23-33. [4] PHAP V M, YAMAMURA N. Development of novel connection control method for small scale solar-wind hybrid power plant[J]. International Journal of Engineering Research, 2016(5): 731-735. [5] MA Tao, YANG Hong-xing, LU Lin. A feasibility study of a stand-alone hybrid solar-wind-battery system for a remote island[J]. ELSEVIER, 2014(121): 149-158. [6] ABDELHAMID K, RACHID I. Techno-economic optimization of hybrid photovoltaic /wind /diesel /battery generation in a stand-alone power system[J]. ELSEVIER, 2014(103): 171-182. [7] BINAYAK B, SHIVA R P. Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014(1): 157-173. [8] HUSSEIN A. Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah[J]. Environment, Development and Sustainability, 2016, 1-18. [9] 刘浩然, 赵翠香, 李轩, 等. 一种基于改进遗传算法的神经网络优化算法研究[J]. 仪器仪表学报, 2016(7): 1573-1580. LIU Hao-ran, ZHAO Cui-xiang, LI Xuan, et al. Studyonaneural network optimization algorithm based on Improved genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2016(7): 1573-1580. DOI:10.3969/j.issn.0254-3087.2016.07.017 [10] 张玉, 贾遂民. 多资源约束的车辆调度问题的改进遗传算法[J]. 计算机工程与应用, 2016(7): 253-258. ZHANG Yu, JIA Sui-min. Study on multi-resource constraints vehicle scheduling problem based on improved genetic algorithm[J]. Computer Engineering and Applications, 2016(7): 253-258. DOI:10.3778/j.issn.1002-8331.1404-0478 [11] 黄敏敏. 小型风光互补并网发电系统的研究与设计[D]. 杭州: 浙江大学, 2016.