﻿ 柴油机喷油控制用电磁阀的温度场仿真与优化
 舰船科学技术  2019, Vol. 41 Issue (1): 96-101 PDF

1. 武汉理工大学 能源与动力工程学院，湖北 武汉 430063;
2. 武汉理工大学 船舶动力工程技术交通行业重点实验室，湖北 武汉 430063;
3. 广西玉柴机器股份有限公司，广西 玉林 537000

Simulation analysis and optimization of high speed solenoid valve in temperature field
HE Yu-hai1,2, ZHU Wen-chao1, LING Wei-jian3
1. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China;
2. Key Laboratory of Marine Power Engineering and Technology under Minister of Communication, Wuhan University of Technology, Wuhan 430063, China;
3. Guangxi Yuchai Machinery Group Co., Ltd, Yulin 537000, China
Abstract: Using Ansys to simulate the temperature field of the solenoid valve, which considering the influence of the time and environment temperature. The simulation obtain of temperature field distribution of the solenoid valve. An experiment was conducted, and the experiment result shows the simulation results can accurately reflect the actual working conditions. The idea of cooling optimization for solenoid valve is put forward, the simulation analysis and tests result show that, at ambient temperature of 50 ℃, the temperature rise of the optimized solenoid valve is reduced by 11.3 ℃ before optimization. Ensure the stability of the solenoid valve in the process of operation.
Key words: solenoid valve     temperature field     Ansys     optimization
0 引　言

1 Ansys热分析理论 1.1 热平衡方程

 ${Q_{{i}}} + {Q_{{g}}} = {Q_o}{\text{，}}$ (1)

 $K T = Q {\text{。}}$ (2)

 $C \dot { T} + K{ T} = Q {\text{。}}$ (3)

1.2 边界条件

1）第一类边界条件：给定了任何一个瞬间在边界上的温度大小。

 ${\left. T \right|_{{S_1}}} = {T_0}{\text{，}}$ (4)

2）第二类边界条件：给定了任何一个瞬间在边界面上热流密度大小。

 ${\left. { - \lambda \frac{{\partial T}}{{\partial n}}} \right|_{{S_2}}} = {q_0}\text{，}$ (5)

3）第三类边界条件：给定了物体周围流体的温度大小以及边界面上物体和流体两者间的换热系数大小。

 ${\left. { - \lambda \frac{{\partial T}}{{\partial n}}} \right|_{{S_3}}} = \alpha \left( {T - {T_f}} \right)\text{，}$ (6)

2 电磁阀温度场的建模仿真

 图 1 双内锥阀芯高速电磁阀 Fig. 1 Double inner cone core high-speed solenoid valve

2.1 电磁阀三维建模

 图 2 电磁铁稳态热分析模型 Fig. 2 Electromagnet steady state thermal analysis model

2.2 载荷及边界条件的设定

 图 3 循环平均生热率 Fig. 3 Average cycling rate

 图 4 电磁铁稳态温度场分布云图 Fig. 4 Electromagnet steady state temperature field distribution cloud map

 图 5 极柱间气隙的温度场云图 Fig. 5 Temperature field cloud diagram of the air gap between poles

 图 6 电磁铁的热流密度分布 Fig. 6 The distribution of the heat flux of the electromagnet

 图 7 铁芯热流密度矢量图 Fig. 7 Heat flux vector diagram of iron core
3 试验的验证与分析 3.1 试验验证仿真结论

 图 8 电磁阀性能测试试验台 Fig. 8 Solenoid valve performance test bench

 图 9 电磁阀综合性能测试系统 Fig. 9 Solenoid valve comprehensive performance test system

 图 10 线圈温度变化曲线 Fig. 10 Coil temperature change curve

3.2 试验与仿真的误差分析

4 电磁阀降温优化设计与验证 4.1 降低发热量的必要性

 图 11 环境温度50 ℃时温度场分布 Fig. 11 Temperature field distribution at ambient temperature of 50 ℃

4.2 降温优化的思路

 ${P_i} = {i^2}R\text{。}$ (7)

 ${P_e} = {{{C_e}{f^2}{B^2}{d^2}} / \rho }\text{。}$ (8)

 ${P_m} = {C_m}f{B^n}V\text{。}$ (9)

1）可直接选用绝缘等级更高的线圈材料，提高线圈的耐热能力，比如E级，最高允许温度为120 °C，线圈温升限值为75 °C。

2）选择导热性好的绝缘纸，如CeQuin复合绝缘纸，具有高导热系数和耐热性，可有效降低工作温升。还可以选用导热绝缘胶，贴在阀壳内壁，既可以绝缘，又可以传递热量。

3）提高电磁阀的散热能力，考虑在阀壳的表面加工翅片，增加散热面积。

4.3 降低温升效果验证

 图 12 有翅片电磁铁 Fig. 12 Finned electromagnet

5 结　语

1）基于Ansys有限元软件对电磁阀的温度场进行仿真，需考虑电磁阀激励电流的通电时长和环境温度，使仿真结果更贴近实际；

2）对电磁阀进行了发热温升试验，试验结果与仿真结果误差在5%以内，表明了温度场仿真能够准确的计算出电磁阀在实际工作时温度随时间的变化；

3）提出了对电磁阀温度场优化的思路，在结论的基础上用Ansys软件仿真，仿真上述结果表明思路是正确的，在解决电磁阀散热问题具有实际的工程应用价值。

 [1] 金江善, 方文超. 船用柴油机电控喷油器高速电磁阀耐久性研究[J]. 舰船科学技术, 2017, 39(9): 91-95. JIN Jiang-shan, FANG Wen-chao. Durability analysis of the high-speed solenoid valve of marine diesel engine injector[J]. Ship Science and Technology, 2017, 39(9): 91-95. DOI:10.3404/j.issn.1672-7649.2017.09.018 [2] MAN J, DING F, LI Q, et al. Novel high-speed electromagnetic actuator with permanent-magnet shielding for high-pressure applications[J]. IEEE Transactions on Magnetics, 2010, 46(12): 4030-4033. DOI:10.1109/TMAG.2010.2078826 [3] 范立云, 高明春, 马修真. 电控单体泵高速电磁阀电磁力关键影响因素[J]. 内燃机学报, 2012, 30(4): 359-364. FAN Li-yun, GAO Ming-chun, MA Xiu-zhen. Investigation on key influencing factors of electromagnetic force of high-speed solenoid valve for electronic unit pump[J]. Transactions of CSICE, 2012, 30(4): 359-364. [4] ANGADI S, JACKSON R, CHOE S, et al. Reliability and life study of hydraulic solenoid valve–part2-experimental study[J]. Engineering Failure Analysis, 2009, 16(3): 944-963. DOI:10.1016/j.engfailanal.2008.08.012 [5] 王春民, 沙超, 孙磊, 等. 基于ANSYS的直流电磁铁温度场仿真分析[J]. 液压与气动, 2015(12): 83-86. WANG Chun-min, SHA Chao, SUN Lei, et al. Simulation temperature field of DC electromagnet based on ANSYS[J]. Chinese Hydraulics & Pneumatics, 2015(12): 83-86. DOI:10.11832/j.issn.1000-4858.2015.12.017 [6] 林抒毅, 许志红. 交流电磁阀三维温度特性仿真分析[J]. 中国电机工程学报, 2012, 36: 156-164+10. LIN Shu-yi, XU Zhi-hong. Simulation and analysis on the three-dimensional temperature field of AC solenoid valves[J]. Proceedings of the CSEE, 2012, 36: 156-164+10. [7] 刘潜峰, 薄涵亮, 王露. 直动电磁阀线圈温度场特性分析[J]. 核技术, 2013(4): 265-269. LIU Qian-feng, BO Han-liang, WANG Luo. Analysis of temperature field of direct action solenoid valve[J]. Nuclear Techniques, 2013(4): 265-269. [8] 刘艳芳, 毛鸣翀, 徐向阳, 等. 液压电磁阀多物理场耦合热力学分析[J]. 机械工程学报, 2014, 50(2): 139-145. LIU Yan-fang, MAO Ming-chong, XU Xiang-yang, et al. Multi-discipline coupled thermo-mechanics analysis of hydraulic solenoid valves[J]. Journal of Mechanical Engineering, 2014, 50(2): 139-145.