﻿ 渤海海域软刚臂系泊核动力平台水动力分析
 舰船科学技术  2019, Vol. 41 Issue (1): 92-95 PDF

Hydrodynamic investigation ofnuclear power platform moored with yokein bohai sea area
ZHANG Hong-yu, LIANG Shuang-ling, QI Jiang-hui, ZHENG Ya-xiong
Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: The first marine nuclear power platform in China uses ship type, moored with yoke mooring system,and working in the Bohai Sea.In order to ensure the marine nuclear power platform securityand nuclear safety,it is necessary to use both model test and numerical calculation to analyze and compare the hydrodynamic performance of it. In this paper, we first obtain the frequency-domain RAO inregular waves of unit amplitude, and then calculate the time-domain motion response under the combined effect of wind, wave and current loads.Weibull distribution is also used to calculate the heave, roll and pitch motion. Finally, the numerical calculation results and model test results are compared and analyzed to provide the design reference for the marine nuclear power platform.
Key words: marine nuclear power platform     model test     time domain     frequency domain     operating and survival condition
0 引　言

FPSO是海洋油气开发中应用最广泛的海洋工程装备，例如作业于渤海海域的“明珠”号和“长青”号，采用塔架软刚臂单点系泊装置系泊，使得FPSO具有风标效应，能使FPSO处于风、浪、流等外界环境联合作用下，位于最小环境力的位置上[1]

1 理论概述

 $\left[ { - {\omega ^2}\left( {{ M} + {{ M}_a}\left( \omega \right)} \right) - i\omega B + { K}} \right]x\left( \omega \right) = F\left( \omega \right)\text{。}$ (1)

 $\begin{split} & \left( {{ M} + {{ M}_a}} \right)\ddot x\left( t \right) + \int_0^t {{ K}\left( {t - \tau } \right)} \dot x\left( \tau \right){\rm{d}}\tau + Cx\left( t \right)=\\ & \quad{F_w}\left( t \right) + {F_{wind}}\left( t \right) + {F_{cur}}\left( t \right) + {F_m}\left( t \right){\text{。}} \end{split}$ (2)

 ${F_{wind}} = {C_w}{C_s}{C_h}{A_w}V_z^2{\text{。}}$ (3)

 ${F_{cur}} = {C_{ss}}{C_d}{A_c}V_{cur}^2\text{。}$ (4)

2 计算条件 2.1 平台参数

2.2 环境条件

3 数值计算 3.1 频域计算模型

 图 1 模型试验频域模型 Fig. 1 Frequency domain model of model test

 图 2 数值计算频域模型 Fig. 2 Frequency domain model of numerical calculation
3.2 时域计算模型

 图 3 模型试验时域模型 Fig. 3 Time domain model of model test

 图 4 数值计算时域模型 Fig. 4 Time domain model of numerical calculation
4 计算结果 4.1 频域计算结果

 图 5 浪向角为90°时的横摇RAO Fig. 5 Roll RAO in 90° wave direction

 图 6 浪向角为180°时的纵摇RAO Fig. 6 Pitch RAO in 180° wave direction

 图 7 浪向角为180°时的升沉RAO Fig. 7 Heave RAO in 180° wave direction

 图 8 浪向角为90°时的横摇RAO Fig. 8 Roll RAO in 90° wave direction

 图 9 浪向角为180°时的纵摇RAO Fig. 9 Pitch RAO in 180° wave direction

 图 10 浪向角为180°时的升沉RAO Fig. 10 Heave RAO in 180° wave direction
4.2 时域计算结果

4.3 结果分析

1）由2种方法计算得到的RAO曲线吻合较好；

2）数值计算由于选取波浪频率较密，得到的RAO曲线更加光顺；

3）由于选取频率较少或外界环境等因素，模型试验结果出现折线起伏。

1）与模型试验结果相比，数值计算结果在垂荡、横摇和纵摇运动统计值上相对较小；

2）由2种方法计算得到的运动统计值在不同风浪流方向组合工况下的大小趋势相同；

3）在极端恶劣海况下，平台未出现稳性丧失，安全性能够得到满足。

5 结　语

 [1] 祁祺, 张涛, 文攀, 等. 基于AQWA的FPSO系泊系统响应数值模拟[J]. 舰船科学技术, 2011, 33(12): 14-18. QI Qi, ZHANG Tao, WEN Pan, et al. Numerical simulation of FPSO mooring systems based on AQWA[J]. Ship Science and Technology, 2011, 33(12): 14-18. DOI:10.3404/j.issn.1672-7649.2011.12.003 [2] 刘元丹, 刘敬喜, 谭安全. 单点系泊FPSO风浪流载荷下运动及其系泊力研究[J]. 船海工程, 2011, 40(6): 146-149. DOI:10.3963/j.issn.1671-7953.2011.06.038 [3] API. Recommended practice for design and analysis of stationkeeping systems for floating structures[S]. 1997. [4] 李欣, 杨建民, 范模. 渤海油田浅水软刚臂系泊FPSO触底分析[J]. 海洋工程, 2004, 22(2): 51-57. LI Xin, YANG Jian-min, FAN Mo. Investigation on the touch of sea bottom by a FPSO in bohai oil field with shallow water[J]. The Ocean Engineering, 2004, 22(2): 51-57.