﻿ 基于增材制造的多胞结构船底板框架性能研究
 舰船科学技术  2019, Vol. 41 Issue (1): 44-47 PDF

Research on the performance of bottom plate frame with multi-cell structure based on AM
LI Chen, OU Yang-qing
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: Based on the analysis about additive manufacturing technology, we come up with a cellular structure according to the principle of bionics, compared to the traditional manufacturing technology. The buckling with other overall performance between the traditional structure and cellular structure through the finite element analysis, which proves the feasibility on the combination of the bionics principle and the additive manufacturing technology, which applied to the shipbuilding industry. There are lots of application prospects in simplified and lighten the hull structures, and shorten the manufacturing cycle. It will be the theoretical foundation for the future research and has a big guiding significance.
Key words: finite element analysis     metal additive manufacturing     bionics     hull
0 引　言

1 模型设计与建模

 图 1 船底板模型 Fig. 1 Model of bottom plate

 图 2 蜂窝底板框架模型 Fig. 2 Model of cellular bottom plate
2 结构强度分析 2.1 静力学分析

 图 3 模型弯曲应力和位移云图 Fig. 3 Stress and displacement nephogram of bend

2.2 扭矩受力分析

 $\gamma = \frac{{\varphi {{r}}}}{{{l}}}\text{；}$ (1)

 $\tau = {{G}}\gamma \text{；}$ (2)

 ${{M}} = \mathop \smallint \nolimits^ \tau {\rm{d}}A \cdot {{r}}\text{。}$ (3)

 图 4 扭转应力和位移云图 Fig. 4 Stress and displacement nephogram of torque

3 结构多属性决策分析

 \begin{aligned} &{{ X}} = {\left[{{{{x}}_{{{ij}}}}} \right]_{{{mn}}}} = \left[{\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{{{x}}_{11}}}&{{{{x}}_{12}}}\\ {{{{x}}_{21}}}&{{{{x}}_{22}}} \end{array}}&{\begin{array}{*{20}{c}} \cdots \\ \ldots \end{array}}&{\begin{array}{*{20}{c}} {{{{x}}_{1{{n}}}}}\\ {{{{x}}_{2{{n}}}}} \end{array}}\\ {\begin{array}{*{20}{c}} \vdots & \vdots \end{array}}& \vdots & \vdots \\ {\begin{array}{*{20}{c}} {{{{x}}_{{{m}}1}}}&{{{{x}}_{{{m}}2}}} \end{array}}& \cdots &{{{{x}}_{{{mn}}}}} \end{array}} \right]\text{，}\\ &\quad\left( {i = 1, 2 \ldots m} \right), \left( {j = 1, 2 \ldots n} \right)\text{。} \end{aligned} (4)

 ${{ R}} = {\left[{{{{r}}_{{{ij}}}}} \right]_{{{mn}}}} = \frac{{{{{x}}_{{{ij}}}}}}{{\displaystyle\mathop \sum \nolimits_{{{i}} = 1}^{{m}} {{{x}}_{{{ij}}}}}}\text{。}$ (5)

 ${{ D}} = \left[{{{{y}}_{{{ij}}}}} \right] = {{{r}}_{{{ij}}}} \times {{{w}}_{{j}}}{\text{。}}$ (6)

 $\sum \nolimits_{{{i}} = 1}^{{m}} {{{N}}_{{{ij}}}} = {{{W}}_{{j}}}\text{。}$ (7)

 ${{{w}}_{{j}}} = \frac{{{{{W}}_{{j}}}}}{{{G}}}\text{，}$ (8)

 ${{{S}}_{ + {{i}}}} = \sum \nolimits_{{{j}} = 1}^{{n}} {{{y}}_{ + {{ij}}}}\text{，}$ (9)
 ${{{S}}_{ - {{i}}}} = \sum \nolimits_{{{j}} = 1}^{{n}} {{{y}}_{ - {{ij}}}}\text{。}$ (10)

 $\begin{split} &{{{Q}}_{{i}}} = {{{S}}_{ + {{i}}}} + \frac{{{{{S}}_{ - {\min}}}\displaystyle\mathop \sum \nolimits_{{{i}} = 1}^{{m}} {{{S}}_{ - 1}}}}{{{{{S}}_{ - {{i}}}} \displaystyle\sum \nolimits_{{{i}} = 1}^{{m}} \left( {{{{S}}_{ - {\min}}}/{{{S}}_{ - {{i}}}}} \right)}} =\\ &\quad {{{S}}_{ + {{i}}}} + \frac{{ \displaystyle\sum \nolimits_{{{i}} = 1}^{{m}} {{{S}}_{ - 1}}}}{{{{{S}}_{ - {{i}}}} \displaystyle\sum \nolimits_{{{i}} = 1}^{{m}} \left( {1/{{{S}}_{ - {{i}}}}} \right)}}\text{。} \end{split}$ (11)

 ${{{U}}_{{i}}} = {{{{{Q}}_{{i}}}}/{{{{Q}}_{\max}}}} \times 100{{\% }}\text{。}$ (12)

4 结　语

 [1] 祁斌. 3D打印技术在船舶领域的应用[J]. 中国船检, 2016(6): 94-100. DOI:10.3969/j.issn.1009-2005.2016.06.022 [2] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688. [3] KRUTH J P, MERCELIS P, VAN VAERENBERGH J, et al. Rapid Prot. J.11(2005) 26. [4] HU Z, ZHU H, ZHANG H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25. [5] ZHANG Hu, ZHU Hai-hong, NIE Xiao-jia, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. SCRIPTA MATERIALIA, 2017, 134: 6-10. DOI:10.1016/j.scriptamat.2017.02.036 [6] 李冉冉. 仿生学原理在机械设计中的应用[J]. 华东科技:学术版, 2013(9): 289-289. [7] 中国船级社. 钢质内河船建造规范[M]. 北京: 人民交通出版社, 2014. [8] 陆克中, 江钊, 毛睿, 等. 基于蜂窝结构的传感器网络覆盖问题求解算法[J]. 计算机研究与发展, 2012, 49(8): 1632-1640. [9] 彭公武. 船体结构与制图[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007. [10] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2011. [11] CHATTERJEE P, ATHAWALE V M, CHAKRABORTY S. Materials selection using complex proportional assessment and evaluation of mixed data methods[J]. Materials & Design, 2011, 32(2): 851-860.