﻿ 典型工况下的全垫升气垫船总强度评估方法
 舰船科学技术  2019, Vol. 41 Issue (1): 7-13 PDF

1. 海军驻锦州地区军事代表室，辽宁 锦州 121000;
2. 哈尔滨工程大学 船舶工程学院，黑龙江 哈尔滨 150001

Research on evaluation method of overall strength of cushion hovercraft in typical conditions
LI Ming1, LIU Ning2, ZHUO Feng-xuan2, WANG Kui-min1
1. Navy Force Representative Bureau in Jinzhou, Jinzhou 121000, China;
2. Harbin Engineering University College of Marine Engineering, Harbin 150001, China
Abstract: Cushion hovercraft is a kind of special high performance ship with excellent adaptability and rapidity. Because of its special operation mode and use demand, its structure forms are various. At present, there is no complete set of mature norms and criteria to evaluate the structural strength of hovercraft. It is also difficult to meet the structural strength requirement of hovercraft structure design by standard calculation. According to the structural characteristics of the cushion hovercraft and the two typical operation states of the hovercraft, lifting sail and draining sail, this paper studies the method of checking the overall strength of the hovercraft by the direct calculation method based on the equivalent design wave method on the basis of the analysis of the method of determining the load component and loading mode of the hovercraft. The overall strength evaluation of hovercraft provides effective technical support.
Key words: air cushion vehicle     lifting sail     draining sail     overall strength accessment
0 引　言

1 载荷分量确定及加载方法研究

1.1 设计波法确定载荷分量

1）根据给定波浪参数，通过理论计算或试验获得船体在单位波幅规则波下的运动和波浪载荷传递函数，运用概率论和数理统计理论，对以上所列举的主要载荷控制参数进行长期预报。

2）设计波的浪向和频率根据主要载荷控制参数的传递函数最大值决定。在给定的工况下，应用气垫船波浪载荷试验方法获得船舶在单位规则波中的响应。计算中应考虑各个浪向和足够范围内的波频，试验时应在载荷主要控制参数随波浪参数变化的峰值点处，进行加密，保证确定峰值点的准确度。

 $\lambda = (2{\text{π}}g)/{\omega ^2}{\text{。}}$ (1)

3）设计波的波幅等于主要载荷控制参数的设计极值除以对应的传递函数的最大幅值。设计波系统的波幅是这样确定的：所考虑的主要载荷参数的长期值除以该载荷参数幅频响应的最大值，即

 $a=\frac {\text{主要载荷参数的长期值}}{\text{该参数幅频响应的最大值}} {\text{，}}$ (2)

4）等效设计波的相位应取在使所考虑的主要载荷控制参数在余弦波作用下达到最大的相位或位置。

 ${M_j} = {A_j}a\cos ({\omega _e}t + {\varepsilon _j}){\text{。}}$ (3)

1.2 加载方法研究

1.2.1 垫升航行状态下的载荷施加方法

1）静垫升压力

2）垫升状态下波浪砰击压力及气垫动压力

①船体在惯性力、气垫动压力、波浪砰击压力作用下整体处于动态平衡；

②船中附近剖面垂向弯矩值等于结构设计载荷，船体剖面弯矩、剪力在首部和尾部是封闭的；

③首尾部能体现出砰击效应产生的影响；

④前后左右气室内每个气室动压力均布。

1.2.2 排水航行状态下的载荷施加方法

2 模型概述 2.1 结构分析模型

2.2 组合工况定义

2.3 边界条件设定

 图 1 边界条件示意图 Fig. 1 Sketch map of boundary condition
3 实船算例

3.1 垫升迎浪工况下总强度评估

 图 2 垫升迎浪中拱工况主甲板应力云图 Fig. 2 Stress map of main deck in hogging with lifting and facing wave

 图 3 垫升迎浪中拱工况浮箱底板应力云图 Fig. 3 Stress map of buoyancy tank roof in hogging with lifting and facing wave

 图 4 垫升迎浪中拱工况浮箱顶板应力云图 Fig. 4 Stress map of buoyancy tank floor in hogging with lifting and facing wave

 图 5 垫升迎浪中拱工况纵舱壁应力云图 Fig. 5 Stress map of longitudinal bulkhead in hogging with lifting and facing wave

 图 6 垫升迎浪中垂工况主甲板应力云图 Fig. 6 Stress map of main deck in sagging with lifting and facing wave

 图 7 垫升迎浪中垂工况浮箱底板应力云图 Fig. 7 Stress map of buoyancy tank roof in sagging with lifting and facing wave

 图 8 垫升迎浪中垂工况浮箱顶板应力云图 Fig. 8 Stress map of buoyancy tank floor in sagging with lifting and facing wave

 图 9 垫升迎浪中垂工况纵舱壁应力云图 Fig. 9 Stress map of longitudinal bulkhead in sagging with lifting and facing wave

 图 10 纵舱壁开口位置单元细化后应力云图 Fig. 10 Stress map after element refinement

 图 11 纵舱壁开口位置单元细化后应力云图 Fig. 11 Stress map after element refinement

3.2 排水迎浪工况下总强度评估

 图 12 排水迎浪中拱工况主甲板应力云图 Fig. 12 Stress map of main deck in hogging with boating and facing wave

 图 13 排水迎浪中拱工况浮箱底板应力云图 Fig. 13 Stress map of buoyancy tank roof in hogging with boating and facing wave

 图 14 排水迎浪中拱工况浮箱顶板应力云图 Fig. 14 Stress map of buoyancy tank floor in hogging with boating and facing wave

 图 15 排水迎浪中拱工况纵舱壁应力云图 Fig. 15 Stress map of longitudinal bulkhead in hogging with boating and facing wave

 图 16 排水迎浪中垂工况主甲板应力云图 Fig. 16 Stress map of main deck in sagging with boating and facing wave

 图 17 排水迎浪中垂工况浮箱底板应力云图 Fig. 17 Stress map of buoyancy tank roof in sagging with boating and facing wave

 图 18 排水迎浪中垂工况浮箱顶板应力云图 Fig. 18 Stress map of buoyancy tank floor in sagging with boating and facing wave

 图 19 排水迎浪中垂工况纵舱壁应力云图 Fig. 19 Stress map of longitudinal bulkhead in sagging with boating and facing wave

4 结　语

 [1] 崔立. 铝合金舰船结构设计中相关问题探讨[J]. 船海工程, 2008(6): 36-37. DOI:10.3963/j.issn.1671-7953.2008.06.010 [2] 程相如. 双体船结构强度计算[D]. 大连: 大连理工大学船舶工程学院, 2012. [3] 龚金静. 全垫升气垫船在波浪中的载荷响应研究[D]. 哈尔滨: 哈尔滨工程大学船舶工程学院, 2013. [4] 管义峰, 黄涣青, 谷家扬, 等. 双体铝合金高速客船强度有限元分析研究[J]. 船舶工程, 2011年第6期. [5] 冯坚, 谷家扬. 11.9 m双体交通艇总强度有限元分析[J]. 江苏船舶, 2010(3): 5-7. DOI:10.3969/j.issn.1001-5388.2010.03.002 [6] 中国船级社. CCS海上高速船入级与建造规范[M]. 北京: 人民交通出版社, 2012.