﻿ 基于刚-柔耦合模型的供弹系统动力学分析
 舰船科学技术  2018, Vol. 40 Issue (12): 150-154 PDF

Dynamic analysis of feeding system based on rigid - flexible coupling model
LI Li, WEI Li-xin, FAN Yong-feng
Zhengzhou Electromechanical Engineering Research Institute, Zhengzhou 450052, China
Abstract: Naval-gun non-chain feeding system has great significance to protect the stability of the naval gun and intercept the target effectively. In order to improve the reliability of the non-chain feeding system, it is necessary to analyze the dynamic characteristics of the feeding system during the shooting process. Based on the theory of rigid-flexible coupling multi-body dynamics, the author adopts a rigid-flexible coupling simulation method based on the three-dimensional solid modeling, finite element analysis and multi-body dynamics analysis theory. The author established the rigid-flexible coupling dynamics model and the rigid body dynamics model, the resistance torque of the start and stable phases of the feeding system under different dynamic models are obtained and compared with the experimental results. The results show that the resistance torque of the rigid-flexible coupling model is closer to the real test results than the rigid body model in the start and stable phase, and the deformation of the flexible body is basically the same as that of the real test results; but the simulation results of the rigid body model are very different from the real results in the stable phase. Therefore, the dynamic simulation of the rigid-flexible coupling model for the feeding system is more accurate than the rigid body dynamics simulation model.
Key words: naval-gun non-chain feeding system     rigid-flexible coupling model     dynamics simulation     resistance torque
0 引　言

1 刚柔耦合模型的建立 1.1 供弹机构的工作原理

 图 1 供弹系统三维模型 Fig. 1 Three - dimensional model of feeding system

 图 2 Ansys柔性体网格划分 Fig. 2 Ansys flexible body meshing

 图 3 柔性体刚性区域建立 Fig. 3 Flexible body rigid region establishment

1.3 仿真模型的约束和参数设定

2 仿真计算与结果 2.1 试验仿真

2.2 仿真测量结果

 图 4 角速度变化曲线（驱动） Fig. 4 Angular velocity curve （motion）

 图 6 刚柔耦合模型阻力矩变化曲线 Fig. 6 Rigid - flexible coupling model resistance moment curve
3 现场试验结果 3.1 现场试验测试原理

 图 7 扭矩传感器安装位置 Fig. 7 Torque sensor mounting position

3.2 现场试验

3.3 现场试验结果

 图 8 角速度曲线 Fig. 8 Angular velocity curve

 图 9 扭矩曲线 Fig. 9 Torque curve

4 仿真结果对比 4.1 结果对比

4.2 仿真试验结论

 图 5 刚体模型阻力矩变化曲线 Fig. 5 Rigid body model resistance moment curve

5 柔性体螺旋片变形仿真

 图 10 任意点变形曲线 Fig. 10 Deformation curve at any point

6 结　语

 [1] 李豪杰, 张合, 李珂翔, 等. 考虑铰链间隙的水面并联稳定平台动力学分析[J]. 兵工学报, 2017, 38(1): 129-134. LI Haojie, ZHANG He, LI Ke-xiang, et al. Dynamic analysis of offshore parallel stabilized platform in considering joint clearance[J]. Acta Armamentarii, 2017, 38(1): 129-134. DOI:10.3969/j.issn.1000-1093.2017.01.017 [2] SHARF I. Geometric stiffening in multibody dynamics for-mulations[J]. Journal of Guidance Control and Dynamics, 1995, 18(4): 882-890. DOI:10.2514/3.21473 [3] 金国光, 贠今天, 杨世明. 柔性变胞机构动力学建模及仿真研究[J]. 华中科技大学学报:自然科学版, 2008, 36(11): 76-79. [4] 王瑞林, 李永建, 张军挪. 基于虚拟样机的轻武器建模技术及应用[M]. 北京: 国防工业出版社, 2014. [5] 荣吉利, 辛鹏飞, 诸葛迅, 等. 空间大型末端执行器柔性绳索捕获动力学研究[J]. 兵工学报, 2016, 37(9): 1730-1737. DOI:10.3969/j.issn.1000-1093.2016.09.025 [6] 张劲夫, 许庆余, 张凌. 具有粘性摩擦的弹性曲柄滑块机构的动力学建模及计算[J]. 西安交通大学学报, 2000, 34(11): 86-89. DOI:10.3321/j.issn:0253-987X.2000.11.021 [7] 王毅, 吴立言, 刘更. 机械系统的刚-柔耦合模型建模方法研究[J]. 系统仿真学报, 2007, 19(20): 4708-4710. DOI:10.3969/j.issn.1004-731X.2007.20.025 [8] 胡胜海, 郭春阳, 余伟, 等. 基于变胞原理的舰炮装填机构刚-柔耦合动力学建模及误差分析[J]. 兵工学报, 2015, 36(08): 1399-1403. [9] 王悦, 刘宏, 彭波, 等. 基于刚柔耦合的新型航天飞行器舱门锁紧机构捕获域研究[J]. 西北工业大学学报, 2016, 34(5): 908-912. [10] 刘铸永. 刚-柔耦合动力学建模理论与仿真技术研究[D]. 上海: 上海交通大学, 2008: 21–68. [11] 陈思佳, 章定国. 带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析[J]. 南京理工大学学报, 2012, 36(1): 182-188. DOI:10.3969/j.issn.1005-9830.2012.01.033