﻿ 发射过程中导弹喷管降载方法研究
 舰船科学技术  2018, Vol. 40 Issue (12): 146-149 PDF

Load reducing for missile nozzle in launching
WANG Tai-kun, WANG Yan-tao
The 713 Research Institute of CSIC, Henan Key Laboratory of Underwater Intelligent Equipment, Zhengzhou 450015, China
Abstract: During launch process, the ejection gas enters the launch tube from the lateral inlet and then acting on the tall of the missile, which brings heavy load on the missile, which brings heavy load on the missile nozzle. In order to solve this problem, numerical simulation method of the three-dimensional unsteady flow field at the bottom of the launcher is established and verified by launching experiment. The numerical simulation results show that the main reason for the abnormal force on the nozzle is caused by excessive concentration of ejection gas on the specific region of nozzle surface. A device for controlling the fluid field of launcher and reducing the force load on the missile nozzle is designed. Further numerical simulation results show that the device can reduce the maximum total moment on the nozzle by 26%. The experiment results show that the new designed device can reduce the load of the nozzle and satisfy the requirements of nozzle servo control system.
Key words: missile nozzle     load reduce     numerical simulation     experiment
0 引　言

1 发射筒底部流场数值模拟方法

1）问题简化处理方法

2）流场控制方程及数值解法

 $\frac{\partial }{{\partial t}}\int_\varOmega {W{\rm d}V} + \int_{\partial \varOmega } {(F(W) - G(W)) \cdot n{\rm d}S} = \int_\varOmega {H{\rm d}V}{\text{。}}$

 $\rho \frac{{Dk}}{{Dt}} = \frac{\partial }{{\partial {x_i}}}\left[{\alpha _k}{\mu _{eff}}\frac{{\partial k}}{{\partial {x_i}}}\right] + {G_k} + {G_b} - \rho \varepsilon - {Y_M}{\text{，}}$
 $\,\rho \frac{{D\varepsilon }}{{Dt}} = \frac{\partial }{{\partial {x_i}}}\left({\alpha _\varepsilon }{\mu _{eff}}\frac{{\partial \varepsilon }}{{\partial {x_i}}}\right) \!+\! {C_{1\varepsilon }}\frac{\varepsilon }{k}\left({G_k} \!+\! {C_{3\varepsilon }}{G_b}\right) \!-\! {C_{2\varepsilon }}\rho \frac{{{\varepsilon ^2}}}{k} \!-\! R{\text{。}}$

 图 1 发射筒底部结构示意图 Fig. 1 Sketch of the launch tube bottom

3）发射筒入口边界条件

 ${\dot m_g} + {\dot m_w} = K\frac{p}{{\sqrt {{T_{t, m}}} }}A\frac{{q(M)}}{{{\text{π}} (M)}}{\text{，}}$

 ${\dot m_g}{h_g}({T_g}) + {\dot m_w}{h_w}({T_0}) = \sum\limits_{i = 1}^n {{w_i}{h_i}({T_{t, m}})}{\text{，}}$

 $\alpha {\dot m_g}{v_g} + {p_g}{A_g} = ({\dot m_g} + {\dot m_w})v + pA{\text{，}}$

 $p = \rho R{T_m}{\text{，}}$

 ${T_m} = {T_{t, m}}\, \tau \left( M \right){\text{。}}$

2 数值计算方法校验

 图 2 燃气和冷却水流量的试验数据 Fig. 2 Gas and cooling-water mass flow rate from experiment

 图 3 无量纲压强对比 Fig. 3 Non-dimensional pressure
3 筒底流场分析及改进措施 3.1 筒底流场结构分析

 图 4 t=100 ms时喷管外表面高、低压强云图（位置对称） Fig. 4 Surface pressure contour at t=100 ms
3.2 改进措施及效果分析

 图 5 导流装置 Fig. 5 Diversion device

 图 6 t=100 ms时喷管外表面压强云图 Fig. 6 Nozzle surface pressure contour at t=100 ms

 图 7 喷管所受力矩对比 Fig. 7 Moments on nozzle

4 结　语

1）试验数据验证结果表明所建立的三维数值模拟方法适用于燃气—蒸汽式发射装置筒底的非稳态流场研究。

2）对所研究的发射装置筒底流场进行了计算分析，发现工质气体近乎集中的作用在喷管特定区域是导致导弹尾喷管载荷超限的根本原因，在此基础上提出了合适的改进措施。

3）数值模拟和试验结果均表明所设计的导流降载装置能够很好降低喷管所受力矩。数值模拟表明喷管所受的最大Z力矩降幅为24%，最大总力矩的降幅为26%。

 [1] EDQUIST C. T. Prediction of the launch pulse for gas generator launched missiles[R]. AIAA-88-3290, 1988. [2] 赵险峰, 王俊杰, 编著. 潜地弹道导弹发射系统内弹道学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001. 4. [3] 吕翔, 李江, 陈剑, 等. 变深度水下发射系统内弹道实验研究[J]. 固体火箭技术, 2012, 35(1): 24-28. DOI:10.3969/j.issn.1006-2793.2012.01.005 [4] 肖虎斌. 潜射导弹燃气蒸汽式发射装置的内弹道建模[J]. 舰船科学技术, 2010, 32(2): 36-39. DOI:10.3404/j.issn.1672-7649.2010.02.008 [5] 肖虎斌, 赵世平. 燃气蒸汽式发射动力装置复杂内流场数值模拟[J]. 固体火箭技术, 2009, 32(4): 392-395. DOI:10.3969/j.issn.1006-2793.2009.04.009 [6] 李仁凤, 乐贵高, 马大为, 等. 进气角与注水规律对燃气蒸汽弹射的影响[J]. 航空动力学报, 2017, 32(4): 961-969. [7] 白俊华, 胡馨博. 进气角度和初始粒径对发射筒内流动特性的影响[J]. 固体火箭技术, 2013, 36(2): 165-169. [8] 常书丽, 吕翔, 王彦涛, 等. 基于蒙特卡洛方法的燃气蒸汽式发射装置内弹道参数分析方法[J]. 固体火箭技术, 2016, 39(6): 857-86. [9] Fluent 6.0. User’s Guide[R]. Fluent Inc., 2006. [10] 王保国, 刘淑艳, 黄伟光. 气体动力学[M]. 北京: 北京理工大学出版社, 2005. [11] SANFORD G. Computer program for calculation of complex chemical equilibrium compositions and applications[R]. NASA/RP 1994-1311.