﻿ 水下机器人矢量推进装置液压系统参数优化设计
 舰船科学技术  2018, Vol. 40 Issue (12): 133-136 PDF

1. 海军驻431厂军事代表室，辽宁 葫芦岛 125004;
2. 上海船舶设备研究所，上海 200031

Optimal design of hydraulic system parameters for vector propeller in underwater robot
LIU Hong-sheng1, WANG Xin-hai1, CHEN Zu-rui2, YU Jun2
1. Navy Representative Office in 431 Shipyard, Huludao 125004, China;
2. Shanghai Marine Equipment Research Institute, Shanghai 200031, China
Abstract: Vector propeller can increase the steering force and oscillation ability for anti-wind and anti-wave of underwater machinery at any speed. The device uses three parallel hydraulic circuits to drive the lifting, rotating and locking operations. In order to make the hydraulic system control vector propeller precisely, the hydraulic parameters need to be optimized. Genetic algorithm is used to optimize the hydraulic system components′ parameters, which can optimize multi-parameters and multi-objectives at the same time; the parameters of hydraulic PID control is optimized by Kriging method, which can get the optimal value flexibly and quickly. Finally, the correctness of the optimization results is verified by the software simulation of the whole system.
Key words: vector propeller     hydraulic parameters     genetic algorithm     kriging method
0 引　言

1 水下机器人矢量推进液压液压驱动系统

 图 1 升降运动液压回路 Fig. 1 Lifting hydraulic circuit

 图 3 回转运动液压回路 Fig. 3 Rotary hydraulic circuit
2 理论基础

2.1 遗传算法

 $x = L + \left( {\sum\limits_{i = 1}^k {{b_i}{2^{i - 1}}} } \right)\frac{{U - L}}{{{2^{k - 1}}}}{\text{。}}$ (1)

 ${f_i} = 1 - \frac{{RM{S_i}}}{{\displaystyle\sum\limits_{k = 1}^N {RM{S_k}} }}{\text{。}}$ (2)

2.2 克里金法

 $y(x) = F(\beta ,x) + z(x) = {f^{\rm T}}(x)\beta + z(x){\text{。}}$ (3)

 $\operatorname{cov} [z({x_i}),z({x_j})] = {\sigma ^2}R[R({x_i},{x_i})]{\text{。}}$ (4)

$R({x_i},{x_j})$ ${n_s}$ 个样本点中任意2个样本点 ${x_i}$ ${x_j}$ 的空间相关方程，对模拟的精确程度起决定性作用，一般有EXP，EXPG，GAUSS等形式。其中高斯相关方程计算效果好，被广泛采用。

 $RMS = \sqrt {\frac{{\displaystyle\sum\nolimits_{i = 1}^{{n_s}} {\Delta y_i^2} }}{{{n_s}}}}{\text{。}}$ (5)

3 优化设计实验 3.1 升降回路液压参数优化设计

 图 4 升降回路优化结果 Fig. 4 Optimization results for lifting circuit
3.2 锁紧回路液压参数优化设计

 图 5 锁紧回路优化结果 Fig. 5 Optimization results for locking circuit

 图 2 锁紧运动液压回路 Fig. 2 Locking hydraulic circuit

3.3 回转回路液压参数优化设计

 图 6 回转回路优化结果 Fig. 6 Optimization results for rotary circuit

3.4 回转回路PID控制参数优化设计

 图 7 优化结果 Fig. 7 Optimization result
4 结　语

 [1] ZHU K, CHEN Y, CAO J, et al. Design and research on high-speed on/off control hydraulic propeller for underwater vehicle propulsion[J]. American Society of Mechanical Engineers, 2009, 597-604. [2] BAE J, BAK J, JIN S, et al. Optimal configuration and parametric design of an underwater vehicle manipulator system for a valve task[J]. Mechanism & Machine Theory, 2018, 123: 76-88. [3] 冯长宝, 韩忠伟, 孙沫莉. 遗传算法和神经网络在船舶柴油机故障诊断中的应用[J]. 舰船科学技术, 2006, 38(6): 40-42. FENG Changbao, HAN Zhongwei, SUN Moli. Genetic algorithm and neural network application in marine diesel engine fault diagnosis[J]. Ship Science and Technology, 2006, 38(6): 40-42. [4] 刘洋. 基于遗传算法的水下无人潜器结构特性优化分析[J]. 舰船科学技术, 2015, 37(9): 145-148. LIU Yang. Optimization analysis of structure of UUV based on genetic algorithm[J]. Ship Science and Technology, 2015, 37(9): 145-148. DOI:10.3404/j.issn.1672-7649.2015.09.029 [5] LIU T, JU X Z. Parameter optimization of hydraulic hybrid vehicle based on genetic algorithm[J]. Applied Mechanics & Materials, 2010, 29–32: 1079-1084. [6] HUI S. Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm[J]. Engineering Applications of Artificial Intelligence, 2010, 23(1): 27-33. DOI:10.1016/j.engappai.2009.09.005 [7] 徐循. 基于遗传算法的船舶推力分配算法研究[J]. 舰船科学技术, 2018, 40(8): 55-57. XU Xun. Research on the method of ship thrust distribution based on genetic algorithm[J]. Ship Science and Technology, 2018, 40(8): 55-57. DOI:10.3404/j.issn.1672-7649.2018.08.011 [8] DU J, MENG L, GU H, et al. Optimal design of clamping mechanism for AUV underwater docking device based on Kriging model[C]// Intelligent Robot Systems. IEEE, 2017: 310–314. [9] ZHANG T, XU X, XU S. Method of establishing an underwater digital elevation terrain based on Kriging interpolation[J]. Measurement, 2015, 63: 287-298. DOI:10.1016/j.measurement.2014.12.025