﻿ 小水线面双体船尾部结构水下辐射噪声特性及结构优化分析
 舰船科学技术  2018, Vol. 40 Issue (12): 44-48 PDF

Characteristics of underwater noise and stern structure optimization for SWATH ship
ZHU Dong-hua
Warship Bureau of Naval Equipment Department, Beijing 100841, China
Abstract: The stern structure of SWATH ship has great difference from normal single hull ship, thus to analyze the characteristics of underwater noise induced by propeller pulse pressure exciting the stern structure and to optimize the stern structure are important for controlling the underwater noise of ship. The results show that, the phase difference of the two propellers has great influence on the underwater noise induced by each order of pulse pressure components, and the minimal values of underwater noise corresponding to most orders appear when the phase difference is 180°. Compared to other optimization measures, to increase the size of crosswise ribs in the area with pulse pressure exciting will have higher cost-effectiveness to reduce the underwater noise induced by each order of pulse pressure components.
Key words: SWATH ship     propeller pulse pressure     underwater noise     stern structure optimization
0 引　言

1 小水线面双体船螺旋桨脉动压力激励尾部结构引起的水下辐射噪声计算方法 1.1 螺旋桨脉动压力测量

 图 1 一侧螺旋桨示意图 Fig. 1 Schematic diagram of one side propeller

 图 2 螺旋桨脉动压力测点 Fig. 2 Measuring points of propeller fluctuating pressure

1.2 螺旋桨脉动压力激励尾部结构引起水下辐射噪声

 图 3 船体结构与周围流场的耦合有限元模型 Fig. 3 Coupled finite element model of hull structure and surrounding flow field

 图 4 螺旋桨脉动压力施加方式示意图 Fig. 4 Schematic diagram of propeller fluctuating pressure application mode

2 小水线面双体船型脉动压力作用区域结构声学优化分析

 图 5 小水线面双体船尾部结构 Fig. 5 Stern structure of the SWATH ship
2.1 板厚影响分析

2.2 横向加强筋尺寸的影响

2.3 横向加强筋间距的影响

3.4 纵向加强筋的影响

2.5 不同结构优化方式对比

3 结　语

1）双桨脉动压力相位差对小水线面双体船尾部结构振动引起的水下辐射噪声由较为明显的影响。除第3阶脉动压力分量外，其余各阶脉动压力分量激励引起的水下辐射噪声均在相位差为180°时取到最小值。

2）通过增加板厚，增大横向构件尺寸，减小构件间隔均可以降低各阶脉动压力引起的水下辐射噪声。其中，增加横向加强筋尺寸的效费比最高，其次为增设纵向加强筋。

 [1] LEWIS F M, TACHMINDJI A J. Propeller vibration[J]. Transactions Society of Naval Architects and Marine Engineers, 1935, 43: 252-285. [2] LEWIS F M, TACHMINDDJI A J. Propeller forces exciting hull vibration[J]. Transactions Society of Naval Architects and Marine Engineers, 1954, 62: 397-425. [3] LEWIS F M. Propeller vibration forces in single-screw ships[J]. Transactions Society of Naval Architects and Marine Engineers, 1969, 77: 318-343. [4] WEITENDORF F A. 25 years research on propeller excited pressure fluctuations and cavitation[J]. Schiffstechnik, 1989, 36(3): 134-146. [5] 熊鹰, 叶金铭, 樊晓斌, 等. 螺旋桨空泡及其诱导的脉动压力的数值和试验研究[J]. 船舶力学, 2006, 10(5): 32-40. XIONG Ying, YE Jin-ming, FAN Xiao-bin, et al. Numerical and experimental research on pressure fluctuations induced by propeller cavitation[J]. Journal of ship mechanics, 2006, 10(5): 32-40. DOI:10.3969/j.issn.1007-7294.2006.05.005 [6] 周心桃, 段宏, 赵耀. 螺旋桨脉动压力的分析推算[J]. 舰船科学技术, 2005, 27(1): 24-27. ZHOU Xin-tao, DUAN Hong, ZHAO Yao. Analysis and calculation of propeller-induced pressure[J]. Ship Science and Technology, 2005, 27(1): 24-27. [7] 陈洋, 沈浩, 季盛, 等. S集装箱船螺旋桨诱导激振力预报的试验研究[J]. 上海船舶运输科学研究所学报, 2006, 29(2): 80-85. CHEN Yang, SHEN Hao, JI Sheng, et al. Experimental study of induced ship hull excitation force prediction by a container ship propeller[J]. Journal of SSSRI, 2006, 29(2): 80-85. DOI:10.3969/j.issn.1674-5949.2006.02.002 [8] 谢基榕, 叶明, 沈顺根. 螺旋桨脉动压力激励尾部结构引起的辐射噪声计算方法[J]. 船舶力学, 2004, 8(4): 101-107. XIE Ji-rong, YE Ming, SHEN Shun-gen. Computational method to sound radiation from the aft derived by surface pulsatile force of propeller[J]. Journal of Ship Mechanics, 2004, 8(4): 101-107. DOI:10.3969/j.issn.1007-7294.2004.04.015