﻿ 冰撞载荷下I型夹层板抗冲击性能研究
 舰船科学技术  2018, Vol. 40 Issue (12): 11-15 PDF

Research on the impact resistance of I type sandwich plates under ice impact load
CHAI Ming-mei, TIAN A-li, WEI Zhen, MA Qing-yong
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: The sandwich structure is widely used in ship repair and shipbuilding fields because of its superior corrosion resistance, high specific strength and high specific stiffness. In this paper, the marine I-type metal sandwich panel is taken as the research object, and the theoretical and numerical methods are used to study the impact resistance of the sandwich panel under the ice-impact load. An ice body material model suitable for the I-type metal sandwich plate and the ice collision problem is proposed, and the material model is verified. The simulation results in this paper are in good agreement with the ISO theoretical curves and the experimental data. It is proved that the model can be used in the numerical simulation of the sandwich plate and ice collision problems. At the same time, it is applied to the collision simulation of ice body and sandwich plate. The collision force and energy absorption of traditional plate structure and metal sandwich plate under ice load are compared. The impace resistance factors composed of impact positions and ice body shapes is analyzed, that provide a reference for the application of the new sandwich plate provides a reference.
Key words: sandwich plate     collision     ice impact load     impact resistance
0 引　言

1 夹层板-冰碰撞的数值仿真模型 1.1 冰体材料模型

 图 1 多晶冰的真应力-真应变曲线σ3[8] Fig. 1 True stress-true strain curves of polycrystalline ice[8]
1.2 夹层板结构及材料模型

 图 2 计算模型剖面示意图 Fig. 2 The cross section of calculation model

2 数值仿真及结果验证

 $P = 7.4{A^{ - 0.7}}\text{，}$

 图 3 仿真结果和相关数据的压强-面积曲线比较 Fig. 3 The comparison between simulation resultand and cited data
3 冰撞载荷下夹层板抗冲击性能讨论 3.1 夹层板与单层板抗冲击性的对比

3.2 撞击位置对夹层板结构响应的影响

 图 4 碰撞区域的有限元模型图 Fig. 4 Finite element model of collision position

1）碰撞的损伤变形

 图 5 夹层板碰撞区域损伤变形图 Fig. 5 Damage Deformation Diagram of Sandwich Plate Impact Area

 图 6 冰体损伤变形图 Fig. 6 Damage deformation of iceberg

2）碰撞力

 图 7 两种工况下碰撞力-时间变化曲线 Fig. 7 Curve of collision force-time under two conditions

3）能量吸收

 图 8 结构总吸能历程曲线 Fig. 8 Structure total energy absorption curve

3.3 冰体形状对夹层板的吸能影响

 图 9 碰撞的有限元模型 Fig. 9 The finite element model of collision

 图 10 结构总吸能-时间历程曲线 Fig. 10 Curve of total energy absorption-time

4 结　语

1）本文运用冰体与刚性墙的碰撞实验验证了冰材料模型的适用性，将仿真结果与ISO推荐曲线的经验公式及试验数据作比较，结果显示三者吻合较好，证明本文提出的材料模型可以用于研究冰和夹层板碰撞的仿真模拟中。

2）根据等质量原则，对传统单层板与新型夹层板在相同撞深下的碰撞力和能量吸收的最大值进行对比，得出夹层板所能承受的碰撞力大于单层板，其耐撞性更优，且夹层板的吸能水平大于单层板，对外部载荷的抵抗能力更强，认为夹层板比单层板的抗冲击性能好。

3）冰体撞击位置的不同，对夹层板所能承受的碰撞力及能量吸收有不同的结果。没有支柱支撑的夹层板结构所能承受的碰撞力的最大值基本和有支柱支撑的夹层板相等，整体碰撞力水平后者略高，能量吸收情况则正好相反，但趋势基本一致。

4）不同的冰体形状撞击夹层板，夹层板的能量的吸收和分配情况则不同。在冰局部形状较尖锐的条件下，夹层板结构总体吸能比较低，在冰局部形状比较平缓的接触面下冰体近为刚体性能，那么夹层板的总体吸能相对要高。

 [1] 李洪升, 杜小振, 岳前进. 海冰强度对应变速率敏感性及其演化模式[J]. 大连理工大学学报, 2003, 43(5): 686-690. LI Hong-sheng, DU Xiao-zhen, YUE Jin-jin. The sensitivity and evolution model of sea ice strength to strain rate[J]. Journal of Dalian University of Technology, 2003, 43(5): 686-690. DOI:10.3321/j.issn:1000-8608.2003.05.001 [2] LIU Z H, AMDAHL J, LOSET S. Plasticity based material modelling of ice and its application to ship–iceberg impacts[J]. Cold Regions Science and Technology, 2011, 65(3): 326-334. DOI:10.1016/j.coldregions.2010.10.005 [3] WANG B, HAN C Y, ROGER B. Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal, Estoril, 2008: OMAE 2008-57134. [4] JIA Zhi-bin, JONAS W. Numerical analysis of noliner dynamic structural behabiour of ice-loaded side-shell structures[J]. International Journal of Steel Structures, 2009, 9(3): 219-230. DOI:10.1007/BF03249496 [5] ROLAND F, REINERT T. Laser welded sandwich panels for the shipbuilding industry[C]//Lightweight Construction-Latest Developments, London, 2000: 1–12. [6] METSCHKOW B. Sandwich panels in shipbuilding[J]. Polish Maritime Research, 2006(s1): 5-8. [7] KUJALA P, KLANAC A. Steel sandwich panels in marine applications[J]. Brodogradnja, 2005, 56(4): 305-314. [8] Stephen J. The confined compressive strength of polycrystalline ice[J]. Journal of ClacioLogy, 1982(98): 172-173. [9] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. DOI:10.1016/0013-7944(85)90052-9 [10] DALEY C. Compilation medium of scale ice indentation test results and comparison to ASPPR[R]. Ottawa, Canada, 1994. [11] PALMER A C, DEMPSEY J P, MASTERSON D M. A revised ice pressure-area curve and a fracture mechanics explanation. Cold Regions Science and Technology, 2009, 56(5):73-76. [12] DALEY C. Compilation medium of scale ice indentation test results and comparison to ASPPR[R]. Ottawa, Canada, 1994. [13] 苏干. 极地运输船舶冰载荷及破冰结构研究[D]. 镇江: 江苏科技大学, 2016.