﻿ 基于趋近律方法的舰载遥控武器站滑模控制研究
 舰船科学技术  2018, Vol. 40 Issue (8): 144-148 PDF

Research of sliding mode control for naval remote controlled weapons station based on reaching law method
ZHANG Xiao-duo, ZHAO Yuan-zheng
Zhengzhou Electromechanical Engineering Research Institute, Zhengzhou 450015, China
Abstract: This paper introduced the development of domestic naval remote controlled weapons station and analyzed the control system development direction of the naval remote control weapon station. Aiming at the stochastic disturbance problem when the naval remote controlled weapons station working at the tracking shooting state, a novel reaching law was presented to solve the contradiction between sliding mode surface reaching time and the system chattering in the regular reaching law, which can also simultaneously improve the system response speed. A speed siding mode controller (SMC) based on the proposed reaching law method was designed for the control system of the naval remote control weapon station. The Simulation results verified the effectiveness and feasibility of the proposed control algorithm and had guiding significance in engineering to optimization of algorithm of the naval remote controlled weapons station.
Key words: naval remote controlled weapons station     reaching law     sliding mode control
0 引　言

 图 1 某型舰载遥控武器站 Fig. 1 A certain type of the naval remote controlled weapons station
1 舰载遥控武器站控制系统优化方向

1）无位置传感器下转子位置估计

2）控制算法优化，提高射击精度

2 控制器设计 2.1 矢量控制

 图 2 武器站伺服系统闭环控制原理图 Fig. 2 The schematic diagram of closed loop control of the servo system of the weapon station

 $p{i_d} = {{{\rm{(}}{u_d}{\rm{ - }}{R_s}{i_d} + {\omega _r}{L_q}{i_q}{\rm{)}}} / {{L_d}}}{\text{，}}$ (1)
 $p{i_q} = {{{\rm{(}}{u_q}{\rm{ - }}{R_s}{i_q}{\rm{ - }}{\omega _r}{L_d}{i_d}{\rm{ - }}{\omega _r}{\psi _f}{\rm{)}}} / {{L_q}}}{\text{，}}$ (2)
 $p{\omega _r}{\rm{ = }}{{{\rm{(}}{P_n}{T_{em}}{\rm{ - }}{P_n}{T_l}{\rm{ - }}B{\omega _r}{\rm{)}}} / J}{\text{，}}$ (3)

 $\dot x = Ax + Bu + {B_0}{T_l}{\text{。}}$ (4)

 图 3 基于矢量控制的位置控制原理图 Fig. 3 The position control schematic diagram based on the vector control
2.2 滑模控制器控制设计

 ${T_{em}}{\rm{ = }}\frac{3}{2}{p_n}{\psi _f}{i_q}{\text{，}}$ (5)

 $J{\ddot \theta } {\rm{ = }}{T_{em}} - {T_l} - B\omega {\text{，}}$ (6)

 $\begin{array}{l}e(t) = \theta (t) - {\theta _d}(t){\text{，}}\\\dot e(t) = \dot \theta (t) - {{\dot \theta }_d}(t){\text{，}}\end{array}$ (7)

 $s(t) = ce(t) + \dot e (t){\text{，}}$ (8)

 $\dot s(t) = c\dot e(t) + \ddot e(t) = c\dot e(t) + \frac{{{T_{em}} - {T_l} - B\omega }}{J} - {\ddot \theta _d}(t){\text{，}}$ (9)

 $s' = - \xi \left| {\mathop {e(t)}\limits^ \bullet } \right|{\mathop{\rm sgn}} (s) - ks{\text{，}}$ (10)

 ${U_{SMC}} = {i_q} = \frac{{2J}}{{3{p_n}{\psi _f}}}\left[ \begin{array}{l}c\dot e(t) + \xi \left| {\dot e(t)} \right|{\rm{sgn}}(s) + \\ks{\rm{ + }}{{\ddot \theta }_d}(t) + \frac{{{T_l} + B\omega }}{J}\end{array} \right]{\text{。}}$ (11)

2.3 稳定性证明

 ${{V = }}\frac{1}{2}{s^2}{\text{，}}$ (12)

 $\begin{split}{l}{{{V}}'}{\rm{ = }}s{s'} = s\left[ { - \xi \left| {\dot e(t)} \right|{\mathop{\rm sgn}} (s) - ks} \right]=\\ - \xi \left| {\dot e(t)} \right|s{\mathop{\rm sgn}} (s) - k{s^2}=\\ - \xi \left| {\dot e(t)} \right|\left[ s \right] - k{s^2}{\text{。}}\end{split}$ (13)

3 仿真研究

 图 4 舰载遥控武器站位置控制仿真模型 Fig. 4 The position control simulation model of the naval remote controlled weapons station

 图 5 SMCC控制器转速响应曲线对比 Fig. 5 The comparison of speed response curve of the SMCC controller

 图 6 SMCC控制器转矩响应曲线对比 Fig. 6 The comparison of torque response curve of the SMCC controller

 图 7 SMCC控制器下三相电流响应曲线 Fig. 7 Three phase current response curves under the SMCC controller

 图 8 常规PI控制器下三相电流响应曲线 Fig. 8 Three phase current response curves under the conventional PI controller

 图 9 SMCC控制器下模拟跟踪曲线 Fig. 9 Analog tracking curve under the SMCC controller

 图 10 SMCC和普通PI控制跟踪误差比较曲线 Fig. 10 The comparison curves of tracking error between the SMCC and the conventional PI control

4 结　语

 [1] 陈延伟, 李翔, 魏立新. 舰载遥控武器站发展探讨[J]. 舰船科学技术, 2010, 34(8): 3–6. http://mall.cnki.net/magazine/Article/JCKX201208013.htm [2] SUN Y, PREINDL M, SIROUSPOUR S, et al. Unified Wide-Speed Sensorless Scheme Using Nonlinear Optimization for IPMSM Drives[J]. IEEE Trans. Power Electron, 2017, 32(8): 6308–6322. [3] 张国强. 内置式永磁同步电机无位置传感器控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1–5. [4] 张伟. 基于开环光纤陀螺控制的无人作战平台稳定技术研究[J]. 国防科学技术大学博士学位论文, 2011: 50–64. http://wap.cnki.net/touch/web/Dissertation/Article/10217-2010075260.nh.html [5] 卢达, 赵光宙, 曲轶龙, 等. 永磁同步电机无参数整定自抗扰控制器[J]. 电工技术学报, 2013, 28(3): 27–34. http://www.cqvip.com/QK/94183X/201303/45148901.html [6] 崔家瑞, 高江峰, 张波, 等. 永磁同步电机滑模变结构鲁棒控制. 电机与控制学报, 2016, 20(5): 84–89. http://www.cqvip.com/QK/92879X/201208/43011075.html [7] 张晓铎. 双体船水翼电伺服控制系统设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 24–31. [8] 高键, 吴祥瑞. 基于滑模控制的船舶电力推进调速系统仿真[J]. 舰船科学技术, 2018, 40(1): 104–107. http://www.cqvip.com/QK/93337X/201504/664625170.html [9] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2015.