﻿ 气动注水喷气推进式快艇关键技术研究
 舰船科学技术  2018, Vol. 40 Issue (8): 50-54 PDF

Research on the key techniques of pneumatic water jet propulsion speedboat
ZHANG Dong-fang
Jiangsu Maritime Institute, Nanjing 211170, China
Abstract: Marine propulsion plant experienced early jet system, hydraulic pumps, energy burst systems, bottom-mounted units, such as evolution, as a kind of highly effective green feed mode at present, are widely applied in high-performance battleships. This paper studies the motion state and characteristics of the jet propulsion, the kinematics and dynamics model based on jet propulsion device, its drive and control the key technology of the in-depth analysis of effective, as the research object to a boat, and design suitable for the boat jet propulsion device of control system and drive system, propulsion performance analysis using numerical tank, the research has certain reference value for the development and application of high-performance battleships propulsion technology.
Key words: speedboat     high-performance     jet propulsion     driving technology
0 引　言

1 喷气推进装置数学模型 1.1 喷气推进装置的运动学模型

 图 1 作用在反应室和喷管内外的不均匀压力 Fig. 1 Pressure acting on inner and outer surface of the relation cell and nozzle

 $F = \frac{{{\rm{d}}}m}{{{\rm{d}}t}}\nu + m\frac{{{\rm{d}}\nu }}{{{\rm{d}}t}} + {\left( {P} \right._2} - \left. {{{P}_{\rm{0}}}} \right){{A}_{2}}\text{，}$ (1)

 $F = \overline m {\nu _2}\text{。}$ (2)

 $f = \frac{{1}}{{2}}{C_{ts}}{\rho _ {\text{水}}}{S_0}\nu _s^{2}\text{，}$ (3)

1.2 喷气推进装置的动力学模型

1.2.1 水蒸汽温度[13]

 ${{{T}}_{\rm{m}}} = \frac{{{{{W}}_{\rm{0}}}}}{{{{C}}\overline {\rm{m}} }} + {T_0} - \frac{{{l_b}}}{C}\text{，}$ (4)

1.2.2 推进器推力

 $\overline {m} = \rho _ {\text{水蒸气}}{{A}_{2}}{\nu _2} \text{，}$ (5)

 ${\rho _ {\text{水蒸气}}} = \frac{{{{P}_{2}}{M_{{\rm{mol}}}}}}{{{T_{\rm{m}}}R}} \text{，}$ (6)

 $F = \frac{{{{\overline {m} }^{2}}}}{{{\rho _ {\text{水蒸气}}}{{A}_{2}}}} \text{，}$ (7)

 $F = \frac{{{{W}_{\rm{0}}}\overline {m} + \left( {{T_0}{\rm{c - }}{l_{\rm{b}}}} \right){{\overline {m} }^{2}}}}{{{\rm{c}}{{P}_{2}}{M_{{\rm{mol}}}}}}\text{。}$ (8)

 图 1 温度Tm流量Q关系曲线 Fig. 1 Relation of flux rate and water vapor temperature
2 快艇喷气推进装置关键技术设计 2.1 快艇喷气推进装置驱动技术设计

 图 3 推力F流量Q关系曲线 Fig. 3 Relation of thruster propulsion and flow rate
2.2 快艇喷气推进装置控制技术设计

 图 4 喷气系统的自动锁止控制 Fig. 4 Locking control system of jet automatic
3 喷气推进快艇设计及性能分析 3.1 喷气推进快艇设计

 图 5 喷气推进装置控制原理 Fig. 5 Control principle of jet propulsion

 图 6 快速艇结构示意图 Fig. 6 Schematic diagram of speedboat

 图 7 气动注水喷射装置的主、俯视图 Fig. 7 Pneumatic water injection device of the main vertical view

 图 8 注水装置结构示意图 Fig. 8 Water injection device structure diagram

 图 9 铰链结构和从动铰链结构的示意图 Fig. 9 Hinge structure and driven hinge structure diagram
3.2 喷气推进快艇性能分析

 图 10 喷口伸缩2种状态的对比示意图 Fig. 10 Nozzle telescopic comparison of two kinds of state diagram

 图 11 快艇数值仿真 Fig. 11 Numerical simulation of speedboat

 图 12 螺旋桨与喷射推进性能比较（空芯代表螺旋桨推进，实芯代表喷射推进） Fig. 12 Comparison of propeller and jet propulsion performance
4 结　语

 [1] POY SM. The evolution of the modern water jet marine propulsion unit[C]// International Conference on Water jet Propulsion I, 1994. [2] ALLISON J. Marine water jet propulsion[J]. SNAME Transaction , 1993, 101: 275–335. [3] LOOIJMANS K N H , etc. The acoustic source strength of Water jet installations[C]// PRADS 98, 1998: 935–941. [4] 万霖, 何凌燕, 黄晓峰.船舶大气污染排放的研究进展[J].环境科学与技术, 2013, 36(5): 57–62. WAN Lin, HE Ling-yan, HUANG Xiao-feng. The research progress of ship emissions[J]. environmental science and technology, 2013, 36(5): 57–62. http://www.academia.edu/9943514/6-%E4%B8%AD%E5%9B%BD%E8%88%B9%E8%88%B6%E5%A4%A7%E6%B0%94%E6%B1%A1%E6%9F%93%E7%89%A9%E6%8E%92%E6%94%BE%E6%A0%87%E5%87%86%E6%B3%95%E8%A7%84%E6%9C%80%E6%96%B0%E8%BF%9B%E5%B1%95 [5] 张文治.喷水推进和螺旋桨推进的比较[J].中国造船,1959(1):18–24. ZHANG Wenzhi. Comparison of water jet propulsion and propeller propulsion[J]. shipbuilding of China, 1959(1): 18–24. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y865099 [6] 刘承江, 王永生, 张志宏, 等. 流场控制体对喷水推进器性能预报影响的研究[J]. 船舶力学, 2010, 14(10): 1117–1121. LIU Chengjiang, WANG Yongsheng, ZHANG Zhihong, et al. Study on the influence of flow control body on the performance prediction of water jet propulsion[J]. ship mechanics, 2010,14(10):1117–1121. [7] 刘承江, 王永生. 混流式喷水推进器空化性能数值分析[J]. 机械工程学报, 2009, 45(12): 76–83. LIU Chengjiang, WANG Yongsheng. Numerical analysis of cavitation performance of mixed flow water jet propeller[J]. Chinese Journal of mechanical engineering, 2009,45(12):76–83. http://mall.cnki.net/magazine/Article/JXXB200912015.htm [8] TERWISGA V. Report of the specialist committee on validation of waterjet test procedures to the 24th ITTC[R]. Edinburgh, UK: ITTC, 2005: 471–508. [9] DING Jingming, WANG Yongsheng, ZHANG Zhizhong, et al.Rsearch on flow loss of inlet duct of marine waterjets[J]Journal of Shanghai Jiaotong University(Science),2010,15(2):158–162. [10] BULTEN N. Numercial analysis of a waterjet propulsion system[D]. Edinhoven, The Netherlans: The Edinhoven University of Technology, 2006. [11] 李伟, 李国辉, 杜鹏, 杨智博, 杨嘉祥.船用喷气式模型结构设计[J]. 哈尔滨理工大学学报2005, 10(1):66–68. LI Wei, LI Guohui, DU Peng, YANG Zhibo, YANG Jiaxiang. Structural design of marine jet model[J]. Journal of Harbin University of Science and Technology, 2005, (1): 66–68. http://www.cqvip.com/QK/93345A/201406/49934387.html [12] 倪少玲, 王少新.船舶阻力教学实验的计算机模拟与仿真[J].实验技术与管理.2003,20(6)41–48. Ni Shaoling, WANG Shaoxin. Computer simulation and Simulation of ship resistance experiment[J]. experimental technology and management.2003,20(6) 41–48. http://cdmd.cnki.com.cn/Article/CDMD-10217-2009060872.htm [13] 李伟.船用喷气式推进器结构原型及其动力特性[D]. 哈尔滨: 哈尔滨理工大学, 2005. [14] 程守洙, 江之永. 普通物理学[M]. 高等教育出版社. 1998: 337–390.