﻿ 船舶甲板结构稳定性试验及改进设计
 舰船科学技术  2018, Vol. 40 Issue (8): 8-13 PDF

1. 海军驻上海江南造船集团有限责任公司军事代表室，上海 201913;
2. 中国舰船研究设计中心，湖北 武汉 430064;
3. 武汉理工大学 高性能舰船技术教育重点实验室，湖北 武汉 430063

Stability test and improved design of deck grillage
DENG Xian-hui1, YAN Xiao-shun2, LUO Wei2, MEI Guo-hui2, WU Wei-guo3
1. Military Representative Office of the Navy in Shanghai Jiangnan Shipbuilding Collective Co., Ltd., Shanghai 201913, China;
2. China Ship Development and Design Center, Wuhan 430063, China;
3. Departments of Naval Architecture, Ocean and Structural Engineering, School of Transportation, Wuhan University of Technology, Wuhan 430063, China
Abstract: In order to analyze the stability of deck grillage with open hatch, experimental and numerical analysis of a double-layer deck grillage with open hatch is carried out. And nonlinear finite element software Abaqus are used to simulate the bucking process of the model. The results of experiment and numerical calculation agree well with each other. Based on the experiment, five kinds of improvement are designed according to the inducement of bucking failure of deck structure. Calculation method and finite element modeling by experiments are used to analyze each schemes, and the best scheme is found out. This paper's work provides a certain reference for the design's of the stability of deck grillage.
Key words: deck     stability     nonlinear finite element     deck shells
0 引　言

1 甲板板架结构轴压稳定性试验及数值仿真分析 1.1 甲板结构模型

 图 1 强力甲板结构CAD图 Fig. 1 The CAD diagram of the powerful deck structure

1.2 试验加载及数据采集系统

 图 2 试验加载示意图 Fig. 2 Schematic diagram of the test load

 图 3 模型边界条件 Fig. 3 The boundary condition of the model
1.3 模型试验及结果分析

1.4 试验结果

 图 4 破坏试验结构载荷位移曲线 Fig. 4 The load-displacement curve of structure in destructive testing
1.5 数值仿真方法验证

1.6 有限元模型边界条件

1.7 初始缺陷处理

 $\frac{{{w_{opl}}}}{t} = 0.1{\beta ^2}{\text{，}}$ (1)

1.8 计算结果对比分析

1）破坏模式对比

 图 5 试验与仿真结果破坏模式对比 Fig. 5 Comparison of test and simulation results failure patterns

2）极限载荷与失效路径对比

 图 6 试验与仿真失效路径对比 Fig. 6 Comparison of test and simulation failure paths

2 甲板板架结构稳定性改进方法 2.1 结构失效诱因分析

 图 7 屈曲失效处底部视图 Fig. 7 The bottom view of the buckling failure

2.2 稳定性改进设计方法

 图 8 方案1 Fig. 8 Case 1

 图 9 方案2 Fig. 9 Case 2

 图 10 方案3 Fig. 10 Case 3

 图 11 方案4 Fig. 11 Case 4
2.3 改进结果分析

 图 12 原始板架和改进方案的载荷-位移曲线 Fig. 12 Load - displacement curve of original plate and improved scheme

3 结　语

1）大开口处的甲板局部屈曲以及纵骨的侧向失稳为整个结构失效的主要诱因。设计过程中，若甲板上布置有大开口，应将大开口外侧甲板及纵骨适当加强。

2）同时改进增强不同的纵向承力构件对极限承载力的提高效果优于分别单独改进某种纵向构件的效果之和，说明不同构件之间相互影响，存在耦合效应。

3）非线性有限元方法能够较为准确地模拟含有大开口的甲板板架结构的稳定性。

 [1] ENDO H, TANAKA Y, AOKI G, et al. Longitudinal Strength of The Fore Body of Ships Suffering from Slamming[J]. Journal of the Society of Naval Architects of Japan, 1988, 1988(163): 322–333. [2] YAO T, FUJIKUBO M, YANAGIHARA D, et al. Buckling Collapse Strength of Chip Carrier under Longitudinal Bending (1st Report): Collapse test on 1/10-scale hull girder model under pure bendung[J]. Journal of the Society of Naval Architects of Japan, 2002, 2002(191): 255–264. [3] DOW R S. Testing and Analysis of a 1/3-Scale Welded Steel Frigate Model[J]. Structural Analysis, 1991. [4] 王佳颖, 张世联. 纵向箱型梁舱段极限强度试验研究[J]. 中国造船, 2011, 52(2): 47–54. https://www.wenkuxiazai.com/doc/2645877ca417866fb84a8e77.html [5] KWON Y B, PARK H S. Compression tests of longitudinally stiffened plates undergoing distortional buckling[J]. Journal of Constructional Steel Research, 2011, 67(8): 1212–1224. [6] 吴梵, 朱晓军, 黄晓明, 等. 平台支撑的潜艇内部平面舱壁极限强度的模型试验研究[J]. 船舶力学, 2007(05): 773–779. [7] PAIK J K, THAYAMBALLI A K, LEE J M. Effect of Initial Deflection Shape on the Ultimate Strength Behavior of Welded Steel Plates Under Biaxial Compressive Loads[J]. Journal of Ship Research, 2004, 48(1): 45–60.