﻿ 内能式转管舰炮活塞杆断裂原因计算分析
 舰船科学技术  2018, Vol. 40 Issue (7): 58-62 PDF

Calculation and analysis of the fracture of piston rod of internal energy transfer pipe
WU Bao-shuang, ZHANG Hai-yang, YANG Hong-liang, LIU Ming-min, FAN Yong-feng
The 713th Research Institute of CSIC, Zhengzhou 450015, China
Abstract: The piston rod fracture of an internal energy transfer pipe was broken, by analzing the structure principle of internal energy transfer weapon, the fault tree of the fault analysis of the piston rod was established. First, it excludes the factors such as the self-motivation card delay, the lag of the ammunition system and the unqualified production and processing of the parts, only the fatigue life is insufficient and the foreign body card delay two factors to be determined. The impulse load of piston rod under working condition is calculated by theory, the fatigue life S-N curve of piston rod was obtained by calculation, the strength analysis of piston rod under load condition is established, finally, based on the fatigue life software analysis platform of designlife, the cycle life of piston under working condition is predicted to be 14 880, more than 1.5 times the design cycle life, based on the results of physical and chemical analysis of fractured piston, the design life factor was eliminated. finally, the main reason is the foreign body lag. The analysis method、simulation method and experimental method used in the analysis of the fault cause of the piston rod have certain reference value to the analysis of similar problems in engineering.
Key words: piston     fracture     failure tree     S-N curve     fatigue life
0 引　言

1 转管自动炮结构原理[3]

 图 1 转管舰炮内部结构图 Fig. 1 Internal structure diagram of the revolver
2 活塞杆断裂原因分析

 图 2 断裂活塞杆及啃伤前活塞 Fig. 2 Break piston rod and bite the piston

 图 3 原因分析故障树 Fig. 3 Cause analysis of fault tree

3 活塞杆仿真分析计算 3.1 活塞杆受力计算

 $\begin{split}{F_{\max }} &= {P_{\max }} \times S = 39.8 \times {10^6} \times 1.358 \times {10^{ - 3}}=\\ & 5.41 \times {10^4}{\rm{N}}\text{。}\end{split}$

 图 4 活塞杆上脉冲载荷示意图 Fig. 4 The impulse load diagram on the piston
3.2 材料的S-N曲线[45]

$\lg \sigma = - \displaystyle\frac{{{a_p}}}{{{b_p}}} = 3.4517$ ap=27.358 2，bp=–7.925 9查材料数据手册可知）。

$\lg \sigma =\displaystyle\frac{{\lg {N_p} - {a_p}}}{{{b_p}}} = 2.694\;7$ ，线段2的起点坐标为（6，2.694 7），由Miner修正准则的MM法则 ${k_2} = - 1/(2k - 1)$ 得， ${k_2} = - 0.067\;3$

45CrNiMoVA钢在90%存活率下疲劳性能的相关参数见表1，对疲劳极限以下的载荷应用MM法则（Modified Miner Rule，MM法则）进行修正，得到材料的S-N曲线[6]图5所示。

 图 5 90%存活率下的S-N曲线 Fig. 5 The S-N cure of 90% survival
3.3 有限元强度分析

 图 6 网格划分 Fig. 6 Mesh generation

 图 7 边界条件 Fig. 7 The boundary conditions

 图 8 在炮膛合力作用下的等效应力云图 Fig. 8 The equivalent stress cloud diagram under the action of the gun bore
3.4 疲劳寿命计算

 图 9 Ncode中活塞杆疲劳寿命预测流程 Fig. 9 Prediction of fatigue life of piston rod in Ncode

 图 10 活塞杆寿命云图 Fig. 10 Piston rod life chart
4 活塞杆断口的理化分析[78]

 图 11 理化分析结果 Fig. 11 Physical and chemical analysis results

5 结　语

 [1] 易当祥, 刘春和, 吕国志, 等. 自行火炮行动系统关重件的疲劳寿命仿真[J]. 兵工学报, 2007, 28(2): 138–143. http://cdmd.cnki.com.cn/Article/CDMD-10699-2007035464.htm [2] 胡慧斌, 候晓锋, 曹立军, 等. 冲击载荷作用下抽筒子疲劳寿命预测与试验验证[J]. 火炮发射与控制学报, 2014, 35(3): 68–73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpfsykzxb201403015 [3] 薄玉成, 王惠源, 李强, 等. 自动机结构设计[M]. 北京: 兵器工业出版社, 2009: 25–29. [4] 《机械工程材料性能数据手册》编委会. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1994. 280–281. [5] 杨鹏, 顾学康. 半潜平台结构疲劳寿命评估方法比较[J]. 舰船科学技术, 2012, 34(8): 112–118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jckxjs201208028 [6] 李涌, 吴宝双. 协同仿真技术某转管舰炮炮闩小闭锁齿疲劳寿命预测[J]. 火力与指挥控制, 2015, 40(12): 141–144. [7] 高镇同, 熊峻江. 疲劳可靠性[M]. 北京: 北京航空航天大学出版社, 2000: 331–362. [8] 张安哥, 朱成九, 陈梦成. 疲劳、断裂与损伤[M]. 成都: 西南交通大学出版社, 2005: 15–21. [9] 张鼎, 黄小平. 复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法[J]. 舰船科学技术, 2012, 34(2): 11–16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201505009 [10] 朱文, 唐文献, 刘永强, 等. 深水自升式钻井平台动静响应分析及疲劳寿命预测[J]. 舰船科学技术, 2014, 36(9): 137–140. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jckxjs201409029