﻿ 大开口双层板架模型屈曲失效简化方法研究
 舰船科学技术  2018, Vol. 40 Issue (7): 29-35 PDF

1. 海军驻大连四二六厂军事代表室，辽宁 大连 116005;
2. 中国舰船研究设计中心，湖北 武汉 430064;
3. 武汉理工大学 高性能舰船技术教育重点实验室，湖北 武汉 430063

Simplified method for buckling failure of a large opening double deck frame mode
XING Wei-sheng1, HE Shuang-yuan2, YAN Xiao-shun2, LUO Wei2, MEI Guo-hui2, WU Wei-guo3
1. Military Representative Office of Navy Stationed in 426 Factory, Dalian 116005, China;
2. China Ship Development and Design Center, Wuhan 430064, China;
3. Departments of Naval Architecture, Ocean and Structural Engineering, School of Transportation, Wuhan University of Technology, Wuhan 430063, China
Abstract: The axial compression stability experiment of the double-deck model with a large open structure was carried out in this paper. The non-linear finite element software ABAQUS was used to establish the double deck model with large open deck. The nonlinear finite element calculation was conducted under the axial compressive loading. The numerical results agree well with the experimental results. On this basis, according to the buckling failure of the deck structure, the double-deck model is simplified; the buckling failure path and ultimate strength under the axial load are compared between the single-deck frame and the stiffened plate model. The results show that the simplified stiffened model can simulate the failure mode of the double model effectively, and provide a new idea for the stability analysis of large open deck frame.
Key words: open deck     stability     nonlinear finite element     stiffened plate simplified model
0 引　言

1 双层板架结构轴压稳定性试验及数值仿真分析 1.1 双层板架结构模型试验 1.1.1 大开口双层板架模型结构设计

 图 1 双层板架结构CAD图 Fig. 1 The CAD diagram of double deck frame structure
1.1.2 试验模型边界条件及加载方式

 图 2 模型边界条件 Fig. 2 The boundary condition of the model

 图 3 试验加载示意图 Fig. 3 Schematic diagram of the test load
1.1.3 模型试验及结果分析

 图 4 破坏试验结构载荷位移曲线 Fig. 4 The load-displacement curve of structure in destructive testing

 图 5 甲板大开口双层板架屈曲破坏形式 Fig. 5 Buckling failure of double deck plates with large openings on deck
1.2 大开口双层板架结构数值仿真分析 1.2.1 有限元模型边界条件

1.2.2 初始缺陷处理

 $\frac{{{w_{opl}}}}{t} = 0.1{\beta ^2},$ (1)

1.2.3 数值仿真结果分析

 图 6 有限元模型屈曲失效模式 Fig. 6 Buckling failure mode of finite element model
1.3 模型试验与数值仿真计算结果对比分析 1.3.1 屈曲失效模式对比

1.3.2 极限承载力对比

2 有限元简化模型数值计算分析 2.1 单层板架简化模型 2.1.1 单层板架简化模型范围选取

 图 7 单层板架简化模型 Fig. 7 Simplified model of single-layer frame
2.1.2 边界条件设置及初始缺陷处理

 图 8 初始缺陷屈曲模态 Fig. 8 Buckling mode of initial imperfection
2.1.3 有限元数值计算结果分析

 图 9 大开口单侧筋与板应力分布 Fig. 9 Stress distribution of stiffeners and plate of large opening

 图 10 单层板架有限元简化模型破坏模式 Fig. 10 Failure mode of single-layer frame simplified model
2.2 大开口结构单侧加筋板模型 2.2.1 模型范围选取及边界条件设定

 图 11 大开口结构单侧模型选取范围 Fig. 11 Selection range of open structure unilateral model
2.2.2 简化加筋板模型数值计算结果分析

 图 12 简化加筋板结构筋与板应力分布 Fig. 12 Stress distribution in simplified stiffened plate structure

 图 13 简化加筋板结构有限元模型失效模式 Fig. 13 Failure mode of simplified stiffened plate structure
2.3 失效模式及极限载荷对比分析 2.3.1 三种结构失效模式及诱因分析

 图 14 三种有限元模式失效模式对比 Fig. 14 Comparison of failure modes between three kinds of finite element models

2.3.2 三种结构极限承载力对比分析

 图 15 试验与仿真载荷位移曲线对比 Fig. 15 Comparison of test and simulation failure paths

3 结　语

1）大开口板架结构试验模型、有限元模型、单层板架简化模型以及加筋板简化模型的计算结果均表明，大开口结构两侧纵骨的侧倾以及甲板局部屈曲导致了整体结构的失稳破坏。因此，在实际的设计过程中，应对甲板上布置有大开口区域的两侧甲板及纵骨适当加强。

2）本文简化的加筋板结构在轴向压缩载荷作用下，屈曲失效模式与双层板架模型相似程度较高，极限承载能力与试验值对比，误差为6.49%。在今后类似研究中可采用简化的加筋板结构进行大开口甲板结构的轴压极限强度的计算与校核。

3）本文以大开口双层板架结构为研究对象，但简化加筋板模型范围的选取、边界条件的设定对轴压极限强度计算结果的影响规律可推广到船底板架、舷侧板架等结构。

 [1] 吴卫国, 袁天, 孔祥韶. 船舶甲板结构稳定性实验与数值仿真研究 [J]. 船舶力学, 2017, z(1): 472–479. http://cdmd.cnki.com.cn/Article/CDMD-10248-2008052247.htm [2] PAIK J K, SEO J K. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part I: Plate elements [J]. Thin-Walled Structures, 2009, 47(8-9): 1008–1017. [3] PAIK J K, SEO J K. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part II: Stiffened panels [J]. Thin-Walled Structures, 2009, 47(8-9): 998–1007. [4] PAIK J K, KIM B J, SEO J K. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part I—Unstiffened plates [J]. Ocean Engineering, 2008, 35(2): 261–270. [5] PAIK J K, KIM B J, SEO J K. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part II stiffened panels [J]. Ocean Engineering, 2008, 35(2): 271–280. [6] FUJIKUBO M, YAO T, KHEDMATI M R, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 1: Continuous plate [J]. Marine Structures, 2005, 18(5-6): 383–410. [7] FUJIKUBO M, HARADA M, YAO T, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 2: Continuous stiffened panel [J]. Marine Structures, 2005, 18(5-6): 411–427. [8] XU M C, SOARES C G. Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels [J]. Marine Structures, 2013, 31(Supplement C): 82–101. [9] XU M C, YANAGIHARA D, FUJIKUBO M, et al. Influence of boundary conditions on the collapse behaviour of stiffened panels under combined loads [J]. Marine structures, 2013, 34: 205-225. [10] XU M, SOARES C G. Assessment of the ultimate strength of narrow stiffened panel test specimens [J]. Thin-Walled Structures, 2012, 55: 11-21. [11] 张宇力, 曾广武, 段洪, 等. 大开口对船舶板架稳定性和极限承载力的影响 [J]. 华中科技大学学报(自然科学版), 2002(5): 56–64. http://mall.cnki.net/magazine/Article/CBLX201210010.htm [12] 周于程, 郑绍文, 刘均, 等. 基于舱段模型的大开口甲板结构稳定性分析与设计 [J]. 中国舰船研究, 2014(2): 37–41, 54. http://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201402007.htm [13] KWON Y B, PARK H S. Compression tests of longitudinally stiffened plates undergoing distortional buckling [J]. Journal of Constructional Steel Research, 2011, 67(8): 1212–1224. [14] 王保森, 董胜, 冯亮, 等. 加筋板极限强度数值计算影响因素及敏感分析 [J]. 中国海洋大学学报(自然科学版), 2018(2): 105–112. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1685466 [15] PAIK J K, THAYAMBALLI A K, LEE J M. Effect of initial deflection shape on the ultimate strength behavior of welded steel plates under biaxial compressive loads [J]. Journal of ship research, 2004, 48(1): 45–60. [16] 初艳玲. 考虑初始缺陷的结构非线性屈曲分析与应用 [J]. 中国造船, 2010(3): 119–127. http://mall.cnki.net/magazine/Article/GLJK201305008.htm