﻿ 钢/尼龙夹层板抗爆性能研究
 舰船科学技术  2018, Vol. 40 Issue (7): 17-21 PDF

1. 江苏科技大学 船舶与海洋工程学院，江苏 镇江 212003;
2. 南京市地方海事局，江苏 南京 210036;
3. 上海凌耀船舶工程有限公司，上海 201108

Research on the explosion resisting performance of steel/nylon sandwich plate
ZHANG Fei1, LV Wei-qing2, CAI Xuan-long3, SHEN Chao-ming1
1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2. Nanjing Local Maritime Bureau, Nanjing 210036, China;
3. Shanghai Lingyao Ship Engineering Co., Ltd., Shanghai 201108, China
Abstract: Marine structures will be hit by the shells and bullets in a naval battle. Simultaneously, the structures are faced with catastrophic destruction generated by detonation and shock wave. Steel/nylon sandwich plate has superior blast resistance properties, as a result, destructions of such structures will be significantly alleviated the structural damage during the shock phase; Steel/nylon sandwich plate is a superior structure of high stiffness and strength; in our work finite element simulation software was employed to analyze the energy absorption capabilities of steel plate and steel/nylon sandwich plate and the response of sandwich plates of various structures. The energy absorption capabilities of sandwich plates was analyzed and compared with steel plates of equal mass. Results show that the steel/nylon sandwich plate has better energy absorption capabilities. When the total thickness of the sandwich plate is kept constant, a power function relationship is found between the thickness and the corresponding deformation of the sandwich plate.
Key words: steel/nylon sandwich plate     numerical simulation     energy absorption     specific deformation
0 引　言

1 计算模型

 $p = A(1 - \frac{\omega }{{{R_1}V}}){e^{ - {R_1}V}} + B(1 - \frac{\omega }{{{R_2}V}}){e^{ - {R_2}V}} + \frac{{\omega {E_0}}}{V}{\text{，}}$ (1)

 $P = {C_0} + {C_1}\mu + {C_2}{\mu ^2} + {C_3}{\mu ^3} + \left( {{C_4} + {C_5}\mu + {C_6}{\mu ^2}} \right)E{\text{，}}$ (2)

 图 1 尼龙动态压缩试样 Fig. 1 Dynamic compress specimen of nylon

 图 2 尼龙在不同应变率下应力应变曲线 Fig. 2 Stress-strain curve of nylon in different strain rate
2 计算结果及分析

 图 3 爆炸载荷下夹层板变形图 Fig. 3 Deformation of sandwich plate under the explosion

 图 4 爆炸载荷下迎爆面钢板应力云图 Fig. 4 Stress cloud of top steel plate under the explosion

 图 5 爆炸载荷下芯材应力云图 Fig. 5 Stress cloud of core under the explosion

 图 6 爆炸载荷下背面钢板应力云图 Fig. 6 Stress cloud of back steel plate under the explosion

 图 7 钢板与夹层板吸能对比 Fig. 7 Comparsion of energy absorption between steel plate and sanwich plate

 $\eta = \frac{{{t_a} + {t_b}}}{{{t_c}}}{\text{。}}$ (3)

 图 8 不同夹层板背面钢板变形时程曲线 Fig. 8 Deformation history curve of different sandwich plate’s back steel plate

3 夹层板防护性能改进设计

 图 9 夹层板厚度比与比变形关系 Fig. 9 Relation between thickness ratio and deformation of sandwich plates

 $D = 0.29{{\rm{E}}^{ - 7.254\eta }}{\text{。}}$ (4)

4 结　语

1）在相同爆炸冲击波的作用下，钢/尼龙夹层板与钢板相比有更好的吸能效果，夹层板能比钢板多吸收大约45%的能量，能够有效保护板后部人员和财产安全。

2）在爆炸冲击波下，总厚度相同但厚度比不同的夹层板具有不同的结构响应，同时夹层板厚度比与背面钢板的比变形间存在幂指数的关系，钢面板厚度不能过薄也不能过厚，所以在夹层板抗爆性能设计时考虑将厚度比控制在0.1～0.2之间为宜。

 [1] 王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究[J]. 中国安全科学学报, 2003, 13(3): 58–61. WANG Fang, FENG Shunshan, YU Gang. Study on plastic large deformation response of target plate under blast shock wave [J]. proceedings of the Chinese society of Safety, 2003, 13 (3): 58–61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgaqkxxb200303016 [2] 李顺波, 东兆星, 齐燕军, 等. 水下爆炸冲击波在含吸收层结构中的传播规律的数值模拟[J]. 高压物理学报, 2009, 23(5): 360–366. LI Shunbo, QI Yanjun, DONG Zhaoxing, et al. Numerical simulation of absorption layer structure of propagation of shock wave in underwater explosion [J]. Journal of high pressure physics, 2009, 23 (5): 360–366. [3] Z. Y. XUE, J. W. HUTCHINSON. Crush dynamics of square honeycomb sandwich cores[J]. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2221–2245. [4] Z. Y. XUE, J. W. HUTCHINSON. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. [5] 顾文彬, 胡亚峰, 徐浩铭, 等. 复合结构防爆罐抗爆特性的数值模拟[J]. 含能材料, 2014, 22(3): 325–331. GU Wenbin, HU Yafeng, XU Haoming, et al. Numerical simulation of explosion resistance of compound structure explosion proof tank [J]. energy bearing materials, 2014, 22 (3): 325–331. http://www.cqvip.com/QK/90247X/201403/661599660.html [6] 王志华, 朱峰, 赵隆茂. 多孔金属夹芯结构动力学行为及其应用[M]. 北京: 兵器工业出版社, 2010. [7] F. ZHU, Z. H. WANG, G. X. LU, et al. Analytical investigation and optimal design of sandwich panels subject to shock loading[J]. Mater Design, 2009, 30(1): 91–100. [8] 蔡玄龙, 沈超明, 卢卫彬. 钢/尼龙夹层板动态压缩力学性能研究[J]. 中国测试, 2016, 42(10): 143–148. CAI Xuanlong, SHEN Chaoming, LU Weibin. Study on dynamic compressive mechanical properties of steel/nylon sandwich panels [J]. China test, 2016, 42 (10): 143–148. [9] 吕洪生, 曾新吾. 连续介质力学, 流体力学与爆炸力学[M]. 长沙: 国防科技出版社, 1999. [10] 吴有生, 彭兴宇, 赵本立. 爆炸载荷作用下舰船板架的变形和破损[J]. 中国造船, 1995, 4(131): 55–61. WU Yousheng, PENG Xingyu, ZHAO Benli. The explosive loading deformation of ship stiffened plate and damaged [J]. Chinese shipbuilding, 1995, 4 (131): 55–61. [11] R HOULSTON, J E SLATER, D V RITZED. Damage assessment of naval steel panels subjected to tree-field and enhanced air-blast loading[M]. Advanced in Marine Structures-2, Elsevier Science Publishers Ltd. 1991. [12] 卢卫彬. 钢/尼龙夹层板的压缩力学性能研究[D]. 镇江: 江苏科技大学, 2016. LU Wei-bin. Study on compressive mechanical properties of steel/nylon sandwich panel [D]. Zhenjiang: Jiangsu University of Science and Technology, 2016. [13] 李宣荣. 高速冲击挤进问题的瞬态有限元分析[D]. 西安: 西北工业大学. 2014. LI Xuan-rong. Transient finite element analysis of high speed impact extrusion [D]. Xi'an: Northwestern Polytechnical University. 2014. [14] 周红. 冲击载荷下SPS夹层板系统损伤特性研究[D]. 镇江: 江苏科技大学, 2013. ZHOU Hong. Study on damage characteristics of SPS sandwich plate system under impact loading [D]. Zhenjiang: Jiangsu University of Science and Technology, 2013. [15] 姚熊亮, 郭君, 许维军. 船舶结构远场爆炸冲击动响应的数值模拟方法[J]. 中国造船, 2006, 47(2): 24–34. https://www.wenkuxiazai.com/doc/e8df6939050876323012125a.html