﻿ 发射筒热力耦合场下力学性能研究
 舰船科学技术  2018, Vol. 40 Issue (6): 148-151 PDF

1. 中国船舶重工集团公司第七一三研究所，河南 郑州 450015;
2. 河南省水下智能装备重点实验室，河南 郑州 450015

Study on mechanical properties of launcher in thermal coupling field
GUO Jing-bin1,2, CHENG Dong1,2, LIU Tao1,2, HU Hui-peng1,2, XUE Rui-juan1,2
1. The 713 Research Institute of CSIC, Zhengzhou 450015, China;
2. The Underwater Intelligent Equipment Laboratory of Henan province, Zhengzhou 450015, China
Abstract: Launchers are an important part of a submarine-launched missile launch device. Launchers must have enough strength and stiffness to meet different launch conditions. This article combines experimental date, ANSYSWORKBENCH software is used to establish simulation model. According to the simulation result of deformation and strength of the operating condition, we could get the deformation of the structure, the launcher are analyzed in thermal, the temperature distribution on the launcher was obtained by thermal analysis, according to the analysis of thermal coupling field, the overall deformation and stress distribution of the launcher were obtained. The simulation result shows: under the pressure and structural loads, the maximum deformation of the launcher was 1.5 mm, the stress was 125 MPa; under the action of temperature load, the deformation of the launch tube flange can reach 3.5 mm, the stress can reach 385 MPa; under the action of thermal coupling field, the maximum deformation of the launcher can reach 4.23 mm. The result of three condition analysis showed that the temperature load is the main factor affecting the stress and strain of the launcher. The center of the launcher bottom are needed to be strengthened to prevent damage.
Key words: launcher     simulation analysis     structural deformation     temperature field
0 引　言

1 发射筒静力学分析 1.1 发射筒有限元模型建立

 图 1 缩比发射筒结构图 Fig. 1 Structure of shrinking launcher

 图 2 缩比发射筒有限元模型 Fig. 2 Finite element model of shrinking launcher

1.2 发射筒静力学分析

 ${t_{ij}} = \frac{{\partial w}}{{\partial {I_1}}}\frac{{\partial {I_1}}}{{\partial {r_{ij}}}} + \frac{{\partial w}}{{\partial {I_2}}}\frac{{\partial {I_2}}}{{\partial {r_{ij}}}} + \frac{{\partial w}}{{\partial {I_3}}}\frac{{\partial {I_3}}}{{\partial {r_{ij}}}}\text{。}$

 $\begin{gathered} {s_1} = \frac{2}{{{u_1}}}\left({u_1}^2 - \frac{1}{{{u_1}^2{u_2}^2}}\right)\left(\frac{{\partial w}}{{\partial {I_1}}} + {u_2}^2\frac{{\partial w}}{{\partial {I_2}}}\right) \text{，} \\ {s_2} = \frac{2}{{{u_2}}}\left({u_2}^2 - \frac{1}{{{u_1}^2{u_2}^2}}\right)\left(\frac{{\partial w}}{{\partial {I_1}}} + {u_1}^2\frac{{\partial w}}{{\partial {I_2}}}\right) \text{。} \\ \end{gathered}$
1.3 有限元仿真结果分析

Ansys Workbench仿真分析得到的发射筒在工质气体压力和机械结构载荷作用下的变形和应力分布情况如图3图4所示。

 图 3 发射筒静力分析应力分布 Fig. 3 Static analysis stress distribution of launch tube

 图 4 发射筒静力分析应力分布 Fig. 4 Static analysis deformation of launch tube

2 温度场下发射筒仿真 2.1 热结构分析模型

 ${\sigma _{ij}} = {c_{ijkl}}{\varepsilon _{kl}} + {\beta _{ij}}(T - {T_0}) = {c_{ijkl}}{\varepsilon _{kl}} + {\beta _{ij}}\Delta T\text{。}$ (1)

 ${\varepsilon _{ij}} = {s_{ijkll}}{\sigma _{kl}} + {\alpha _{ij}}\Delta T\text{。}$ (2)

2.2 温度场仿真分析结果

 图 5 发射筒温度场分布 Fig. 5 Temperature field distribution of launch tube

 图 6 发射筒温度场下变形图 Fig. 6 Deformation of launch tube temperature field

 图 7 发射筒温度场下应力分布图 Fig. 7 Stress distribution of launch tube temperature field

3 热力耦合场仿真分析

 图 8 热力耦合仿真流程 Fig. 8 Process of thermal coupling simulation

 图 9 发射筒热力耦合场下变形图 Fig. 9 Thermal coupling field deformation of launcher

 图 10 发射筒热力耦合场下应力分布图 Fig. 10 Thermal coupling field stress distribution of launcher

4 结　语

1）通过Ansys Workbench仿真软件的前处理优化了发射筒三维结构模型，建立了缩比发射筒仿真模型。

2）通过发射筒静力学分析得出，发射筒在仅受气压和机械机构载荷作用时，发射筒筒底段中心位置有1.5 mm变形，应力达127 MPa。

3）通过发射筒温度场分析得出，在发射过程中，高温高压气体推动导弹出筒，在此期间发射筒内温度呈阶梯分布，温度由筒底段至筒体段上法兰由115 ℃到29 ℃依次递减，与实际情况相符。在热应力作用下，发射筒在筒体段上法兰区域处有3.5 mm变形，筒底段应力集中可达317 MPa

4）热力耦合场仿真结果可为发射筒设计提供参考，由分析结果得出，发射筒在筒底段圆弧面中心位置处变形较大，最大变形量可达4.23 mm，应力384 MPa。设计时可在筒底段圆弧面加井字形筋板，增大发射筒底段强度和刚度，有效抵御变形。

5）由3种工况下发射筒变形结果可以看出，温度载荷是影响发射筒应力应变的主要因素，在发射筒设计的时候要结合试验,综合考虑温度载荷带来的影响。

 [1] 倪火才. 潜地弹道导弹发射装置构造[M]. 哈尔滨: 哈尔滨工程大学出版社, 1998. [2] 李兵, 何正嘉, 陈雪峰. ANSYS Workbench设计、仿真与优化(第二版)[M], 北京: 清华大学出版社, 2011. [3] 韩罗峰, 郭敬彬, 乔社宁, 等. 离心压缩机水压仿真及试验研究[J]. 流体机械, 2014, 42(7): 5–9. HAN Luo-feng, GUO Jing-bin, QIAO She-ning. Study of Hydraulic Simulation and Test for Centrifugal Compressor[J]. Fluid Machinery, 2014, 42(7): 5–9. http://www.cqvip.com/QK/93457A/201407/661822948.html [4] 叶文, 赵建忠. 舰载环境对导弹武器装备可靠性分析的影响分析及对策[J]. 质量与可靠性, 2014(2): 5–9. YE wen, ZHAO Jian-zhong. Analysis of the impact of Shipborne Environment on Reliability Analysis of Missile Weaponry and Countermeasures[J]. Quality and Reliability, 2014(2): 5–9. [5] 林琳, 张熙川. MIL-STD-810F低温试验方法研究 [J]. 电子产品可靠性与环境试验, 2010, 28(2): 5–8. LIN Lin, ZHANG Xi-chuan. Research on the Low Temperature Test in MIL-STD-810F[J]. Electronic Product Reliability and Environmental Testing, 2010, 28(2): 5–8. http://mall.cnki.net/magazine/Article/DZKH201002003.htm [6] 刘文一, 焦冀光. 舰载环境对导弹武器装备可靠性的影响分析及对策[J]. 质量与可靠性, 2014(2): 5–9. LIU Wen-yi, JIAO Ji-guang. Analysis of the Impact of Shipborne Environment on the Reliability of Missile Weaponry and Its Countermeasures[J]. Quality and Reliability, 2014(2): 5–9. [7] 冯国增, 冯拥军, 许向前. 救生艇用柴油机气缸套温度场的计算与分析[J]. 舰船科学技术, 2009, 31(4): 65–67. FENG Guo-zeng, FENG Yong-jun, XU Xiang-qian. Calculation and Analysis of Temperature Field of Cylinder Liner for Lifeboat Diesel Engine[J]. Ship science and technology, 2009, 31(4): 65–67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jckxjs200904015 [8] DEF STAN 00-35, General Specification for Aircraft Gas Turbine Engines[S].