﻿ 深海会聚区目标探测机动方法研究
 舰船科学技术  2018, Vol. 40 Issue (6): 95-101 PDF

Research on maneuvering methods of target detection in deep sea convergence zones
TANG Shuai, HAN Mei, ZHANG Chi
Navy Submarine Academy, Qingdao 266199, China
Abstract: Based on formation condition of Deep-sea CZ and CZ target judgment relied on waveguide invariant characteristics, to analyze CZ Target detective process under different conditions and establish target detection model, which is analyzed quantitatively the method of searching target and moving away from target. Research shows: under approach situation, for searching, it is benefit to use maximum audible angel of measurement and acceleration and for moving away, minimum audible angle of measurement and acceleration is better; under far from the situation, for searching, it is benefit to use minimum audible angel of measurement and acceleration and for moving away, maximum audible angle of measurement and acceleration is better. The effectiveness of the method is verified by simulation and experiment.
Key words: convergence zones in deep sea     target detection     ship maneuvering
0 引　言

1 深海会聚区声场 1.1 会聚区形成条件
 图 1 会聚区形成条件示意图 Fig. 1 Formation conditions of deep-ocean convergence zone

1.2 深海会聚区目标态势判定

 图 2 深海试验数据干涉条纹图 Fig. 2 Waveguide invariant striations from deep-ocean experimental data
2 深海会聚区目标探测机动分析 2.1 会聚区机动探测模型

 ${X_w} = \int_0^t {{V_w}\left( t \right)\sin {C_w}\left( t \right)} {\rm d}t\text{，}$ (1)
 ${Y_w} = \int_0^t {{V_w}\left( t \right)\cos {C_w}\left( t \right)} {\rm d}t\text{。}$ (2)
 图 3 会聚区探测机动示意图 Fig. 3 Maneuvering to detect in convergence zone

 ${X_{m0}} = {D_0}\sin {\beta _0},$ (3)
 ${Y_{m0}} = {D_0}\cos {\beta _0}\text{。}$ (4)

t时刻目标位置位于

 ${X_m} = {D_0}\sin {\beta _0} + {V_m}\sin {C_m}t,$ (5)
 ${Y_m} = {D_0}\cos {\beta _0} + {V_m}\cos {C_m}t\text{。}$ (6)

 $\begin{split}f\left( t \right) = & {D^2} = {\left( {{X_m} - {X_w}} \right)^2} + {\left( {{Y_m} - {Y_w}} \right)^2}{\rm{ = }}\\ & {\left( {{D_0}\sin {\beta _0} \!\!+\!\! {V_m}t\sin {C_m} \!\!-\!\! \int_0^t {{V_w}\left( t \right)\sin {C_w}\left( t \right)} {\rm d}t} \right)^2}\!\!+\!\! \\ & {\left( {{D_0}\cos {\beta _0} \!\!+\!\! {V_m}t\cos {C_m} \!\!-\!\! \int_0^t {{V_w}\left( t \right)\cos {C_w}\left( t \right)} {\rm d}t} \right)^2}\text{。}\end{split}\!\!\!\!$ (7)

 $\begin{split}f\left( t \right) =& {D^2} = {\left( {{X_m} - {X_w}} \right)^2} + {\left( {{Y_m} - {Y_w}} \right)^2}= \\& \left( {{D_0}\sin {\beta _0} + {V_m}t\sin {C_m} - } \right.\\& {\left. {\left( {{V_w}{t_0}\sin {C_w}_0{\rm{ + }}{V_w}\left( {t - {t_0}} \right)\sin {C_w}_1} \right)} \right)^2}+\\& \left( {{D_0}\cos {\beta _0} + {V_m}t\cos {C_m} - } \right.\\& {\left. {\left( {{V_w}{t_0}\cos {C_w}_0 + {V_w}\left( {t - {t_0}} \right)\cos {C_w}_1} \right)} \right)^2},\end{split}$ (8)

 $f\left( t \right){\rm{ = A}}{t^2} + Bt + C\text{。}$ (9)

 $A = {V_m}^2 - 2{V_m}{V_w}\cos \left( {{C_m} - {C_w}_1} \right) + {V_w}^2,$
 $\begin{split}B =& 2{D_0}\left( {{V_m}\cos \left( {{C_m} - {\beta _0}} \right) - {V_w}\cos \left( {{C_w}_1 - {\beta _0}} \right)} \right)+\\& 2{V_w}^2{t_0}\left( {\cos \left( {{C_w}_1 - {C_w}_0} \right) - 1} \right) - \\&2{V_m}{V_w}{t_0}\left( {\cos \left( {{C_m} - {C_w}_0} \right){\rm{ - }}\cos \left( {{C_m} - {C_w}_1} \right)} \right),\end{split}$
 \begin{align}C{\rm{ = }}& {D_0}^2 - 2{D_0}{V_w}{t_0}\cos \left( {{C_w}_0 - {\beta _0}} \right) + 2{V_w}^2{t_0}^2-\\& 2{V_w}^2{t_0}^2\cos \left( {{C_w}_1 - {C_w}_0} \right) + 2{D_0}{V_w}{t_0}\cos \left( {{C_w}_1 - {\beta _0}} \right)\text{。}\end{align}

 $\!\!\!\begin{split}\frac{{\partial f}}{{\partial t}}= & {\rm{ 2(}}{D_0}{V_m}\cos ({C_m} - {\beta _0}) - {D_0}{V_w}\cos ({C_{w1}} - {\beta _0})-\\& {V_m}{V_w}{t_0}\cos ({C_m} - {C_w}_0) + {V_m}{V_w}{t_0}\cos ({C_{w1}} - {C_m})+\\& {V_m}^2{t_0}\cos ({C_{w1}} - {C_w}_0) - {V_w}^2{t_0}) +\\& ({V_m}^2 - 2{V_m}{V_w}\cos ({C_w}_1 - {C_m}) + {V_w}^2)t,\quad\quad (10)\end{split}$
 $\frac{{{\partial ^2}f}}{{{\partial ^2}t}}{\rm{ = }}{V_m}^2 - 2{V_m}{V_w}\cos ({C_w}_1 - {C_m}) + {V_w}^2\text{。}$ (11)
2.2 典型态势模型分析

1）当 $A = 0$ 时，舰艇与目标间距离随时间的变化关系满足线性关系。对参数A进行分析，只有满足 ${C_w}_1 = {C_m},$ ${V_m} = {V_w}$ 时， $A = 0$ ；将 ${C_w}_1 = {C_m},{V_m} = {V_w}$ 条件代入参数B表达式，可得， $B = 0$ ，所以， $f\left( t \right){\rm{ = }}C$ ，示意图如图4所示。因此，当舰艇与目标同向、同速时，舰艇与目标间距离随时间的变化为常数，即两者间距离保持不变，且只与初始态势有关。

 图 4 当 $A = 0$ 时，舰艇与目标间距离随时间变化示意图 Fig. 4 When $A = 0$ , the distance between ship and target changed with time

2）当 $A \ne 0$ 时，舰艇与目标间距离随时间的变化关系满足抛物线关系。根据抛物线性质及参数意义可知，参数 $A$ 影响抛物线的开口，其中， $A$ 的符号影响开口方向， $\left| A \right|$ 的大小影响开口大小；参数 $B$ $C$ 影响抛物线的位置，其中， $B$ 影响抛物线的左右位置， $C$ 影响抛物线的上下位置；同时， $A$ $B$ 决定抛物线对称轴位置，对称轴 $t = - \displaystyle\frac{B}{{2A}}$ ，示意图如图5所示。

 $\Delta f = f\left( t \right) - f\left( 0 \right) = {\rm{A}}{t^2} + Bt,$ (12)

 $t = \frac{{ - B \pm \sqrt {{B^2} + 4A\Delta f} }}{{2A}}\text{。}$ (13)
 图 5 当 $A \ne 0$ 时，舰艇与目标间距离随时间变化示意图 Fig. 5 When $A \ne 0$ , the distance between ship and target changed with time
2.3 模型特征参数分析

1）抛物线开口方向

 图 6 不同态势目标穿越会聚区示意图 Fig. 6 Traversing CZ of different situation targets

 图 7 不同接近态势穿越会聚区，目标距离变化示意图 Fig. 7 The distance change for approach situation targets

 图 8 会聚区远离目标，目标距离变化示意图 Fig. 8 The distance change for far from situation targets

2）抛物线开口大小

3）抛物线与坐标轴交点

3 仿真与试验数据验证 3.1 仿真验证

1）会聚区目标处于接近运动态势

 图 9 接近态势，舰艇不同速度时探测时间对比 Fig. 9 Contrast of detection time at different speed under for approach situation targets

 图 10 舰艇Qm=80°时，舰艇不同速度时探测时间 Fig. 10 When Qm=80°, detection time at different speed

2）会聚区目标处于远离运动态势

 图 11 远离态势，舰艇不同速度时探测时间对比 Fig. 11 Contrast of detection time at different speed under for far from situation targets

2）当目标航向变化角Qm增大后，即舰艇位于正横附近时，舰艇将目标置于最小可听测舷角Qwmin航向进行跟踪，目标探测时间最长，舰艇探测目标时间随舰艇舷角Qw增大而减小；随着舰艇速度的增加，目标最小可听测舷角Qwmin增大，当Qw<Qwmin时，舰艇与目标之间初始阶段不满足远离态势；当Qw>Qwmin时，舰艇与目标之间处于远离态势，将目标置于最小可听测舷角Qwmin航向进行跟踪，目标探测时间最长，如图11（b）所示。

 图 12 目标速度不同，舰艇不同运动要素时探测时间 Fig. 12 Detection time at different speed and course
3.2 试验验证

4 结　语

 [1] JENSEN B, KUPERMAN W A, PORTER M B, et al. Computational ocean acoustics(second edition) [M]. American Institute of Physics, 2011: 21-23. [2] KIMBERLY M F. Improving accuracy of acoustic prediction in the philippine sea through incorporation of mesoscale environmental effects[R]. AD Report. Naval Postgraduate School. 2008: 6. [3] TOBY E S. Improving underwater vehicle communication in the littoral zone through adaptive vehicle motion[J]. (A). J. Acoust. Soc. Am. 125, 2581, 2009. [4] 李玉阳, 笪良龙. 海洋锋对深海会聚区特征影响研究[J]. 声学技术, 2010, 6: 78–79. LI yuyang, DA lianglong. Research on the effects of ocean front on characteristics of convergence zone [J]. Technical Acoustics, 2010, 6: 78–79. http://cdmd.cnki.com.cn/Article/CDMD-10217-2008029241.htm [5] STEPHEN D L. Dependence of the structure of the shallow convergence zone on deep ocean bathymetry[J]. (A). J. Acoust. Soc. Am. 127, 1962, 2010. [6] KEVIN D H. Detection performance modeling and measurements for convergence zone (CZ) propagation in deep water(A)[J]. J. Acoust. Soc. Am. 130, 2530, 2011. [7] STEPHEN D L. Investigating sources of variability of the range and structure of the low frequency shallow convergence zone (A)[J]. J. Acoust. Soc. Am. 130, 2555, 2011. [8] SONG H C. Diversity combining for long-range acoustic communication in deep water[J]. J. Acoust. Soc. Am. 132, EL68, 2012. [9] KEVIN D H. Towed array propagation measurements and modelling in the Philippine Sea (A)[J]. J. Acoust. Soc. Am. 131, 3353, 2012. [10] 唐帅, 笪良龙, 徐国军, 等. 深海会聚区波导不变量特征研究及应用[J]. 海洋科学, 2014, 7: 82–85. TANG Shuai, DA Liang-long, XU Guo-jun. Research on waveguide invariant characters and application in deep-ocean convergence zone [J]. Marine sciences, 2014, 7: 82–85.