﻿ 基于DDAM方法的船舶柴油机排气消声器抗冲击优化研究
 舰船科学技术  2018, Vol. 40 Issue (6): 67-72 PDF

1. 哈尔滨工程大学 动力与能源工程学院，黑龙江 哈尔滨 150001;
2. 中国航发沈阳发动机研究所，辽宁 沈阳 110000

Shock resistance design of marine diesel silencer based on DDAM
CAO Yi-peng1, FEI Jing-zhou1, YAN Li-qi2, ZHANG Run-ze1
1. Harbin Engineering University, College of Power and Energy, Harbin 150001, China;
2. AECC Shenyang Engine Research Institute, Shenyang 110000, China
Abstract: The silencer is the necessary device for ship diesel exhaust noise control. Because of the low structural stiffness, the large displacement and stress will be happened in the shock environment. And then, the plastic deformation or damage will be generated, which will have a great influence on the exhaust noise control of diesel engines. In this paper, the common diesel silencer is selected as calculation model, and the shock response of structure is analyzed by dynamic design analysis method. According to the distribution of stain and displacement results, the shock resistance method of silencer structure is studied based on the optimization of mass distribution, stiffness distribution and structure form. Some methods of silencer shock resistance design are presented.
Key words: silencer     DDAM     finite element method     shock resistance
0 引　言

1 分析模型及冲击输入边界描述 1.1 分析模型描述

 图 1 插管消声器结构 Fig. 1 The structure of silencer

 图 2 插管消声器的有限元模型 Fig. 2 The finite element model of silencer

1.2 冲击输入方法

DDAM是基于模态迭加法的结构振动设计分析方法，该方法首先对系统动力学模型进行模态分析，得到系统模态振型和模态质量后，根据设计冲击谱得出各阶模态的模态位移和应力，以此为输入计算结构的位移和应力。

 ${A_0} = 98.1\frac{{19.05 + {m_a}}}{{2.72 + {m_a}}} \text{，}$ (1)
 ${V_0} = 1.52\frac{{5.44 + {m_a}}}{{2.72 + {m_a}}}\text{。}$ (2)

2 结构冲击动力学分析

 图 3 冲击应力与位移响应 Fig. 3 Structure stress and displacement response

3 消声器结构抗冲击设计研究

3.1 基座垫板

 图 4 支座垫板结构及其位置 Fig. 4 The supports structure and its position

 图 5 冲击应力与位移响应 Fig. 5 Structure stress and displacement response

3.2 隔板刚度

 图 6 垂向冲击环境下的结构应力位移响应 Fig. 6 The stress and displacement response in vertical shock

3.3 隔板角度

 图 7 冲击应力与位移响应 Fig. 7 Structure stress and displacement response

3.4 支座布置位置

 图 8 消声器的冲击应力响应 Fig. 8 Stress response of silencer

4 结　语

1）垂向冲击环境下的结构应力最大，应力出现在插管与外筒体连接位置。

2）增加基座垫板可以较好的用于缓解纵向与横向的冲击应力，对设备的质量增量不大，也可以增强插管与外筒体连接位置的刚度，此方法可以在消声器设计中优先采用。

3）对垂向冲击下结构应力的优化设计方法，可考虑从隔板刚度和角度两方面开展。适当增强插管与外筒体的隔板刚度可以有效地降低应力，此情况下结构的质量稍增加；隔板的角度对结构最大应力影响很大，可在保证结构静载强度的前提下，适当增大隔板角度。

4）支座的位置对纵向与横向冲击下的结构响应影响明显，结构的支座位置尽量围绕质心位置布置，同时，从缓解垂向冲击应力的角度，支座的位置可设在消声器质心偏上的位置。

 [1] Zhao Y L, He L, Lu Z Q. Application of DDAM on the computation of shock response of marine floating raft vibration-isolating system[J]. Engineering Mechanics, 2007, 24(4):515–521. [2] 韩少燕. 舰用燃机抗冲击分析方法与模型简化研究[D]. 大连: 大连理工大学, 2015. [3] 张强, 何朝勋, 杨建军. 应用Ansys的DDAM方法进行舰船设备的抗冲击计算[J]. 舰船科学技术, 2011, 33(12):42-45. ZHANG Qiang, HE Chao-xun, YANG Jian-jun. The shock resistance research of warship equipment with DDAM using Ansys[J]. Ship Science and Technology, 2011. [4] 孙宇鹏, 刘镇, 李伟军. 基于DDAM方法的船舶推进系统冲击响应仿真[J]. 船海工程, 2012, 41(5):153-155. SUN Yu-peng, LIU Zhen, LI Wei-jun. Simulation of Shock Resistance Capability of Ship Propulsion System Based on DDAM[J]. Ship & Ocean Engineering, 2012. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201205041.htm [5] 李晓明, 陈凤. 舰船浮筏隔振装置DDAM抗冲击计算[J]. 噪声与振动控制, 2012, 32(6):34-39. LI Xiao-ming, Chen Feng. Shock Response Computation of Vibration-isolating System of Marine Floating Raft Using DDAM[J]. Noise and Vibration Control, 2012, 32(6):34–39. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zsyzdkz201206011 [6] Shin, Y. S. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers & Structures, 2004, 82(23–26):2211–2219. [7] LIANG C C, Yang M F, Tai Y S. Prediction of shock response for a quadrupod-mast using response spectrum analysis method[J]. Ocean Engineering, 2002, 29(8):887–914. [8] 姚熊亮, 戴绍仕, 周其新, 等. 船体与设备一体化抗冲击分析[J]. 爆炸与冲击, 2009, 29(4):367-374. YAO Xiong-liang, DAI Shao-shi, ZHOU Qi-xin.Numerical experiment methods for ship hull and equipment integrated analysis on shock resistance of shipboard equipments[J]. Explosion and Shock Waves, 2009. [9] 计晨, 汪玉, 赵建华, 等. 舰用柴油机抗冲击性能频域分析[J]. 振动与冲击, 2010, 29(11):171-176. JI Chen, WANG Yu, ZHAO Jian-hua. Frequency domain analysis of marine diesel anti-shock capability[J]. Journal of Vibration and Shock, 2010, 29(11):171–176. [10] 陈海龙, 姚熊亮, 张阿漫, 等. 船用典型动力设备抗冲击性能评估研究[J]. 振动与冲击, 2009, 28(2):45-50. CHEN Hai-long, YAO Xiong-liang, ZHANG A-man. The shock resistance performance evaluation research on the typical dynamic device used in ships[J]. Journal of Vibration and Shock, 2009, 28(2):45–50. http://mall.cnki.net/magazine/Article/ZDCJ200902014.htm [11] 王强, 李冬林. 推进电机端盖结构的抗冲击分析及优化[J]. 机电工程技术, 2016(1):78-81. WANG Qiang, LI Dong-lin. Shock Resistance Analysis and Optimization Design for the Cover of anImpelling Motor[J]. Mechanical and Electrical Engineering Technology, 2016(1):78–81. http://www.cnki.com.cn/Article/CJFDTotal-JXKF201601023.htm [12] 耿超, 李倩茹, 唐杰, 等. 半主动控制浮筏隔振系统抗冲击特性的试验研究[J]. 机电工程, 2016, 33(8):934–938. GENG Chao, LI Qian-ru, TANG Jie. Experimental study on the shock resistance performanceof the semi-active floating raft[J]. Journal of Mechanical&Electrical Engineering, 2016, 33(8):934–938. http://cdmd.cnki.com.cn/Article/CDMD-10217-2007116461.htm [13] 张相闻, 杨德庆, 吴广明. 综合考虑减振与抗冲击性能的复合基座设计方法[J]. 振动与冲击, 2016, 35(20):130–136. ZHANG Xiang-wen, YANG De-qing, WU Guang-ming. A vibration and shock isolation synthesis design method for hybrid base[J]. Journal of Vibration and Shock, 2016, 35(20):130–136. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013023173.htm