﻿ 非对称双体船布局优选研究
 舰船科学技术  2018, Vol. 40 Issue (6): 45-50 PDF

Optimization of asymmetric catamaran layout
LIU Shuang, LI Yun-bo, YAN Feng-chao
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: This article is based on CFD technology, and the motion response of asymmetrical catamaran under different sheet size and layout under still water is simulated.And the CFD method is used to predict and discuss the motion characteristics of asymmetric catamaran.And the wave-resistance of asymmetry catamaran are calculated by potential flow method.The asymmetry catamaran layout has been optimized by combining the effects of resistance and sailing gesture, and the results are compared with the conventional catamaran.Studies have shown that the differences in the layout of the slices can have a significant impact on the sailing performance of asymmetric catamarans, we can find the right arrangement of asymmetry catamaran with good performance by analyzing and the movement characteristics of the new ship are analyzed based on the simulation results.That’s all can provide reference for the development of asymmetry catamaran.
Key words: asymmetry catamaran     CFD methods     sailing gesture     layout optimization
0 引　言

1 CFD数值模拟方法 1.1 船体模型建立

 图 1 “亚洲女士”号示意图 Fig. 1 Diagram of Asian Lady ship

 图 2 非对称双体船示意图 Fig. 2 Diagram of asymmetry catamaran
1.2 计算域选取

 图 3 计算域示意图 Fig. 3 Diagram of computing domain
1.3 物理模型选取

 $\begin{split} \frac{{\partial (\rho k)}}{{\partial t}} + \frac{{\partial (\rho k{u_i})}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}[(\mu + \frac{{{\mu _t}}}{{{\sigma _k}}})\frac{{\partial k}}{{\partial {x_j}}}] + {G_k} - \rho \varepsilon,\end{split} \text{。}$ (1)

 ${y^ + } = 0.172(\frac{y}{L}){Re ^{0.9}}\text{。}$ (3)

1.4 计算网格划分

 图 4 非对称双体船船计算域网格 Fig. 4 Grid of asymmetry catamaran computing domain

2 非对称双体船船型布局研究

2.1 主体尺度保持不变，侧体长度变化

 图 5 总阻力随长度比的变化曲线 Fig. 5 Curve of the total resistance with length changing

 图 6 航行姿态随长度比的变化曲线 Fig. 6 Curve of the sailing gesture with length changing

2.2 主体尺度不变，侧体宽度变化

 图 7 总阻力随宽度比的变化曲线 Fig. 7 Curve of the total resistance with width changing

 图 8 航行姿态随宽度比的变化曲线 Fig. 8 Curve of the sailing gesture with width changing

2.3 改变主侧体中纵剖面距离

 图 9 总阻力随K/B的变化曲线 Fig. 9 Curve of the total resistance with K/B changing

 图 10 航行姿态随K/B的变化曲线 Fig. 10 Curve of the sailing gesture with K/B changing

2.4 改变主侧体中横剖面距离

 图 11 总阻力随d/L的变化曲线 Fig. 11 Curve of the total resistance with d/L changing

 图 12 航行姿态随d/L的变化曲线 Fig. 12 Curve of the sailing gesture with d/L changing

2.5 非对称船型阻力曲线与双体船比较

 图 13 两种船型阻力系数比较 Fig. 13 Comparison of resistance coefficient of two hull form

3 非对称双体船兴波阻力研究

 图 14 不同船体构型下的兴波阻力 Fig. 14 The wave-making resistance of different ship forms

4 结　语

 [1] 赵连恩, 韩端锋. 高性能船舶水动力原理与设计[M]. 哈尔滨工程大学出版社, 2007. [2] 贾静蓓, 宗智..不对称型双体船初稳性研究[J]. 中国舰船研究.2008(1): 13-17. JIA Jing-bei, ZONG Zhi.Research of initial stability of unsymmetrical catamaran[J]. Chinese Journal of Ship Research.2008(1): 13-17. [3] 黄志敏.不对称双体船振动特性分析[D]. 大连: 大连理工大学.2007. [4] 李广年, 赵连恩.非对称双体船兴波问题与侧体布局优化分析[J]. 中国造船.2013(4): 55-62. LI Guang-nian, ZHAO Lian-en.Wave and ship layout optimization analysis of unsymmetrical catamaran[J], Ship building of China, 2013(4): 55-62. [5] WILCOX D C.Turbulence modeling for CFD[M]. La Canada, CA:DCW industries, 1998. [6] LIN C W, PERCIVAL S, GOTIMEER E H.Viscous drag calculations for ship hull geometry[C]//9th International Conference on Numerical Metheds in Laminar and Turbulent Flow, Atlanta, GA, 1209-1222.