﻿ 高压差流量调节阀流道低噪声优化设计
 舰船科学技术  2018, Vol. 40 Issue (4): 147-151 PDF

Low noise optimal design of high pressure differential flow regulating valve
FANG Chao, MA Shi-hu, CAI Biao-hua, YU Jian
Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract: In view of the prominent problem of throttling noise in the flow regulating valve of marine seawater system, the CFD method was adopted to simulate the flow field inside the flow regulating valve under high pressure differential condition. Based on the calculation results of regulating valve inner flow passage flow field, the mechanism and cause of the flow noise of were analyzed. According to the cause of the regulating valve, combined with the basic theory of low-noise design of the valves, combined with the basic theory of low-noise design of the valve, the flow-path of the regulating valve was optimized. The flow field calculation results of optimized flow-path show that the low pressure area is reduced .The vortex inside flow channel is eliminated, so that the flow noise is restrain. The research provides guidance for low-noise optimized design of regulating valves.
Key words: regulating valve     inner flow field     flow noise     optimized design
0 引　言

1 流道几何模型和数值方法介绍 1.1 几何模型

 图 1 流量调节阀结构简图 Fig. 1 Structure diagram of regulating valve

 图 2 原阀内流道模型 Fig. 2 Original valve flow-path model
1.2 数值方法介绍

 $\frac{{\partial p}}{{\partial t}} + \frac{\partial }{{\partial {x_i}}}\rho {u_i} = 0\text{，}$ (1)
 $\begin{split}\frac{{\partial \rho {u_i}}}{{\partial t}} + \frac{\partial }{{\partial {x_j}}}\rho {u_i}{u_j} = - \frac{{\partial \rho }}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_j}}}\mu \frac{{\partial {u_i}}}{{\partial {x_j}}} -\\\rho \overline {u_i'u_j'} + {S_i},\;\; {{ i, j = 1,2}}\text{。}\end{split}$ (2)

 $\frac{{\partial \rho k}}{{\partial t}} + \frac{\partial }{{\partial {x_j}}}\rho {u_j}k = \frac{\partial }{{\partial {x_j}}}\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}\frac{{\partial k}}{{\partial {x_j}}} + {P_k} - {\beta '}\rho k\omega \text{，}$ (3)
 $\frac{{\partial \rho \omega }}{{\partial t}} \!+\! \frac{\partial }{{\partial {x_j}}}\rho {u_j}\omega = \frac{\partial }{{\partial {x_j}}}\mu \!+\! \frac{{{\mu _t}}}{{{\sigma _k}}}\frac{{\partial \omega }}{{\partial {x_j}}} \!+\! {D_\omega } \!+\! \alpha \frac{\omega }{k}{P_k}\! -\! \beta \rho {\omega ^2}\text{。} \! \! \! \!$ (4)

LES模型认为湍流是由大小不同尺度的涡组成，流场瞬时变量由滤波函数可分为大涡运动和小涡运动，大尺度涡可由瞬态N-S方程直接模拟，不直接模拟小尺度涡，其对大尺度涡的影响采用亚格子模型模拟。经过滤波函数处理的大涡模拟控制方程为：

 $\frac{{\partial \rho }}{{\partial t}} + \frac{\partial }{{\partial {x_i}}}\rho \overline {{u_i}} = 0\text{，}$ (5)
 $\frac{{\partial \rho \overline {{u_i}} }}{{\partial t}} + \frac{\partial }{{\partial {x_j}}}\rho {u_i}{u_j} = - \frac{{\partial p}}{{\partial {x_i}}} + \frac{\partial }{{\partial xj}}\mu \frac{{\partial {\sigma _{ij}}}}{{\partial {x_j}}} - \frac{{\partial {\tau _{ij}}}}{{\partial {x_j}}}\text{。}$ (6)

2 原流道流场计算结果 2.1 结构离散及边界条件

 图 3 内流道网格模型 Fig. 3 Flow-path mesh model

2.2 流场计算结果分析

 图 4 原阀内流道压力分布云图 Fig. 4 Pressure distribution nephogram of original valve flow-path

 图 5 原阀内流道速度分布云图 Fig. 5 Velocity distribution nephogram of original valve flow-path

 图 6 原阀内流道湍动能云图 Fig. 6 Turbulent kinetic energy distribution nephogram of original valve flow-path

 图 7 原阀内流道流线 Fig. 7 Streamline of original valve flow-path
3 流道优化及优化流道计算结果 3.1 优化流道设计原理及几何模型

1）结构法是通过构造调节阀通流部分的结构使工作液体流向受到结构改变而损耗能量，常见的构造结构类型有突然扩张、转弯、阻碍等，本文中的流量调节阀原流道结构即为此类。

2）射流法是利用主流面积与节流面积之间的差异引起速度聚变从而达到损耗能量的目的。工作液体进入节流口和流出节流口时都伴随着射流压降损失。

3）粘滞法是使调节阀内的工作液体与调节阀通流部分的内壁面产生粘性摩擦进而损耗水力能量。为满足节流件的阻力系数，一般会选择增大调节阀流道内的通流面积。粘滞法的设计思路可提高摩擦耗能、热能在水力损耗中的占比，抑制损耗能量向声能和振能转化。

 图 8 原阀和优化阀球体模型 Fig. 8 Original valve and optimized valve sphere model
3.2 优化流道流场计算结果分析

 图 9 优化流道压力分布云图 Fig. 9 Pressure distribution nephogram of optimized valve flow-path

 图 10 优化流道速度分布云图 Fig. 10 Velocity distribution nephogram of optimized valve flow-path

 图 11 优化流道湍动能云图 Fig. 11 Turbulent kinetic energy distribution nephogram of optimized valve flow-path

 图 12 优化流道流线图 Fig. 12 Streamline of optimized valve flow-path
4 结　语

1）高压差工况下，由于阀门的节流作用，阀芯出口处流体压力迅速降低，低于饱和蒸汽压力，阀后局部发生空化，引起空化噪声；阀门流道结构突变引起流体流速变化不均匀，剪切层失稳在阀芯前后及内部卷成漩涡，形成涡流噪声。

2）通过对调节阀内流道进行分割优化设计，以小通径、多流道代替大通径、单流道，使阀门内流道摩擦面积增大，摩擦耗能在水利损耗中占比增加，减小了水力能量向声能的转化；优化后的流道最大流速降低，最低压力提高，湍动能下降，流道内流体流动更平稳，阀门流噪声得到有效抑制，优化方案为流量调节阀的低噪声优化设计提供了参考方向。

 [1] 颜凌云, 武鹏飞, 包宗贤, 等. 纯水溢流阀的噪声控制研究[J].液压与气动, 2012(3): 23-25. YAN Ling-yun, WU Peng-fei, BAO Zong-xian, et al. Noise control of water hydraulic relief valve[J].Chinese Hydraulics and Pneumatics, 2012(3):23-25. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201108003002.htm [2] 刘进, 阎兆立, 程晓斌, 等. 基于空化辐射噪声的检测方法实验研究[J].应用声学, 2014, 33(1): 60-65. LIU Jin, YAN Zhao-li, CHENG Xiao-bin, et al. Experimental research on pump cavitation detection dased on acoustic radiation[J].Journal of Applied Acoustics, 2014, 33(1):60-65. [3] 刘翠伟, 李玉星, 王武昌, 等. 输气管道气体流经阀门气动噪声产生机理分析[J].振动与冲击, 2014, 33(2): 152-157. LIU Cui-wei, LI Yu-xing, WANG Wu-chang, et al. Analysis on the mechanism of aero-acoustics noise generated by gas flow through valves of natural gas pipelines[J].Journal of Vibration and Shock, 2014, 33(1):60-65. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdycj201402029 [4] 李树勋, 丁强伟, 徐晓刚, 等. 超(超)临界多级套筒调节阀空化抑制模拟研究[J].华中科技大学学报(自然科学版), 2015, 43(3): 37-41. LI Shu-xun, DING Qiang-wei, XU Xiao-gang, et al. Numerical study on cavitation suppression in ultra-supercritical multistage sleeve control valve[J].Journal of Science and Technology (Nature Science Edition), 2015, 43(3):37-41. http://d.wanfangdata.com.cn/Periodical_hzlgdxxb201503008.aspx [5] BINOD K S, HIMADRI C, PRADIPTA B M, et al. Dynamic simulation of a pressure regulation and shut-off valve[J].Computer and Fluid, 2014, 101(20): 233-240. [6] 吴克启, 舒朝晖.高等流体力学[M]. 北京: 中国电力出版社, 2009. WU Ke-qi, SHU Chao-hui. Advanced Fluid Mechanics[M]. Beijing: China Electric Power Press, 2009. [7] 许玮健, 靳国永, 王雪仁, 等. 阀门管路系统声传播特性仿真分析[J].声学技术, 2015, 34(4): 153-156. XU Wei-jian, JIN Guo-yong, WANG Xue-ren, et al. Simulation analysis of acoustics propagation of piping system with valve[J].Technical Acoustics, 2015, 34(4):153-156. [8] 刘少刚, 刘海丰, 舒海生, 等. 通海阀内流道优化降低流噪声[J].哈尔滨工程大学学报, 2013, 34(4): 511-516. LIU Shao-gang, LIU Hai-feng, SHU Hai-sheng, et al. Flow noise reduction of outboard valves based on internal flow path optimization[J].Journal of Harbin Engineering University, 2013, 34(4):511-516. http://www.cqvip.com/QK/92273A/201304/45974643.html [9] 何涛, 王秋波, 王锁泉, 等. 低噪声迷宫式控制阀设计原理及数值分析[J].船舶力学, 2017, 21(2): 127-137. HE Tao, WANG Qiu-bo, WANG Suo-quan, et al. Low noise design principle and numerical analysis on labyrinth control valves[J].Journal of Ship Mechanics, 2017, 21(2):127-137.