﻿ 基于滑移网格的螺旋桨性能分析
 舰船科学技术  2018, Vol. 40 Issue (4): 6-10,26 PDF

Performance analysis of propeller based on sliding mesh
HUANG Xin, ZHU Han-hua, AN Bang
School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
Abstract: For the calculation of propeller steady and unsteady hydrodynamic performance, using multiple reference frame model, the calculation of unsteady hydrodynamic performance using Reliable turbulence model, thrust coefficient simulation of different velocity of propeller, torque coefficient and open water efficiency, value comparison, simulation results and experimental results show that the thrust coefficient calculated by multiple reference model, torque coefficient and open water efficiency are in good agreement with the experimental value; to the steady results as the initial value, the unsteady hydrodynamic performance of propeller is calculated using the sliding mesh model. Compared to the results of steady unsteady results and the experimental results show that the calculation results are more consistent, the sliding mesh model precision more and more suitable for the calculation of the hydrodynamic performance of the propeller.
Key words: propeller     multiple reference frame     sliding mesh     hydrodynamic performance
0 引　言

1 数学模型 1.1 流体控制方程

 $\frac{{\partial {\mu _i}}}{{\partial {x_i}}} = 0,$ (1)
 ${\rm{\rho }}\frac{{\partial \left( {{u_i}{u_j}} \right)}}{{\partial {x_j}}} \!=\! - \frac{{\partial p}}{{\partial {x_j}}} \!+\! \rho {g_j} + \rho \frac{\partial }{{\partial {x_j}}}\left[ {\mu \left( {\frac{{\partial {u_i}}}{{\partial {x_j}}} \!+\! \frac{{\partial {u_j}}}{{\partial {u_i}}}} \right) \!- \!\overline {\mu _i^{'} \mu _j^{'}} } \right]\text{。}$ (2)

1.2 湍流模型

 $\begin{split}&\frac{{\partial \left( {\rho k} \right)}}{{\partial t}} + \frac{{\partial \left( {\rho k{u_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + \frac{{{\mu _t}}}{{{\sigma _k}}}} \right)\frac{{\partial k}}{{\partial {x_j}}}} \right] + \\& {G_k} + {G_b} - \rho \varepsilon - {Y_M} , \end{split}$ (3)
 $\begin{split}& \frac{{\partial \left( {\rho \varepsilon } \right)}}{{\partial t}} + \frac{{\partial \left( {\rho \varepsilon {u_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + \frac{{{\mu _t}}}{{{\sigma _\varepsilon }}}} \right)\frac{{\partial \varepsilon }}{{\partial {x_j}}}} \right] + \\& \rho {C_1}E\varepsilon - \rho {C_2}\frac{{{\varepsilon ^2}}}{{k + \sqrt {v\varepsilon } }} + {C_{1\varepsilon }}{C_{3\varepsilon }}{C_b}\frac{\varepsilon }{k}\text{。}\end{split}$ (4)

2 仿真模型 2.1 螺旋桨模型建立

 图 1 螺旋桨实体模型 Fig. 1 Propeller model

2.2 网格划分及边界条件的设置 2.2.1 网格划分

 图 2 流场网格 Fig. 2 Flow field grid
2.2.2 流场域边界条件设置

 图 3 流场域边界条件设置 Fig. 3 Flow boundary condition settings
2.3 流场域旋转模型设置

3 螺旋桨水动力性能分析 3.1 螺旋桨定常水动力性能分析

 图 4 敞水性能对比曲线 Fig. 4 Open water performance comparison curve

3.2 螺旋桨非定常水动力性能分析

 图 5 敞水性能对比曲线 Fig. 5 Open water performance comparison curve

3.3 不同旋转模型下螺旋桨性能对比分析

 图 6 敞水性能对比曲线 Fig. 6 Open water performance comparison curve

3.4 螺旋桨表面压力情况分布

 图 7 叶切面弦向压力分布曲线 Fig. 7 Tangential pressure distribution curve at leaf section

 图 8 桨叶压力分布云图 Fig. 8 Nephogram of blade pressure distribution

4 结　语

1）采用结构网格与非结构网格相混合的网格划分方式相比单一网格划分方式更加适合螺旋桨流场域，既能保证结果精度又可以减少网格数量加快计算速度。

2）将通过MRF模型计算的螺旋桨定常水动力性能结果作为初始场，然后采用SM模型计算非定常水动力性能，与定常计算结果相比更加接近试验值。表明采用SM模型更加符合螺旋桨的实际运行情况。

3）对进速系数J=0.4时桨叶表面压力分布情况进行分析，为以后螺旋桨的噪声、振动研究提供依据。

 [1] 董世汤, 等. 船舶推进器水动力学[M]. 北京: 国防工业出版社, 2009. [2] 赖华威, 刘月琴, 吴家鸣. 基于CFD方法的螺旋桨性能计算与分析[J]. 船海工程, 2009(4): 131–135. http://www.doc88.com/p-9873795635469.html [3] CARLTON J S. Marine propellers and propulsion[J]. Marine Propellers & Propulsion, 2012. [4] 高富东, 潘存云, 蔡汶珊, 等. 基于CFD的螺旋桨敞水性能数值分析与验证[J]. 机械工程学报, 2010, 46(8): 133–139. http://www.cqvip.com/QK/90288X/201008/33626278.html [5] 王超, 黄胜, 解学参. 基于CFD方法的螺旋桨水动力性能预报[J]. 海军工程大学学报, 2008, 20(4): 107–112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgcdxxb200804023 [6] FUNENO I. Analysis of unsteady viscous flows around a highly skewed propeller[J]. Journal of the Kansai Society of Naval Architects Japan, 2002(237): 39–45. [7] WATANADE T, KAWAMURA T, TAKEKOSHI T. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code[C]// Proceedings of 5th International Symposium on Cavitation, Osaka, Japan: CAV2003, 2003. [8] KIM S E, RHEE S. Toward high-fidelity prediction of tip-vortex around lifting surfaces[C]// Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John, Canada, 2004. [9] 张漫, 黎胜. 基于滑移网格技术计算螺旋桨水动力性能研究[J]. 船海工程, 2013, 42(5): 25–29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whzc201305006 [10] 何万国. 船舶螺旋桨敞水性能仿真计算分析[J]. 船舶工程, 2014(s1): 48–51.