﻿ 舰船舱室通风系统效能评估
 舰船科学技术  2018, Vol. 40 Issue (1): 139-142 PDF

1. 武汉第二船舶设计研究所，湖北 武汉 430205;
2. 海军驻431厂军代表室，辽宁 葫芦岛 125004;
3. 中国人民解放军某部队，青岛 266104

Assessment of the ventilation system efficiency for vessel chambers
WANG Xiao1, TANG Xiong-hui2, YU Tao1, NIU Si-gui3, WANG Hua-jian3, SHI Hong-qi1
1. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China;
2. Navy Military Representative Department Resident in No. 431 Plant, Huludao 125004, China;
3. A Certain Unit of the PLA, Qingdao 266104, China
Abstract: Ventilation system for enclosed space chambers of large vessels are designed as initiative mechanical ventilation system. Based on the characteristics of the enclosed space chambers and the ventilation test results of two typical vessels, this paper builds the ventilation model for the enclosed space chambers and compares the CO2 concentration variation during the ventilation. The effective ventilating rate is proposed to evaluate the efficiency of the vessel chamber ventilation system. The results show that the calculated results of ventilation model agree well with the tested results. Moreover, the effective ventilating rate proposed in this paper could intuitively indicate the efficiency of the vessel chamber ventilation system. This study is supposed to offer some guidance for the design and optimization of the vessel chamber ventilation system.
Key words: ship chambers     indoor air quality     ventilation     effective ventilating rate
0 引　言

1 研究对象

2 数学模型 2.1 模型概述

 图 1 舱室环境控制系统简化模型 Fig. 1 Simplified model of environmental control system for vessel chambers

 $Q = {Q_s} - {Q_p}{\text{。}}$ (1)
2.2 集总模型

 $\frac{{{\rm d}C(t)}}{{{\rm d}t}} = - aC(t) + b,$ (2)

 $a = \frac{{Q + \eta {Q_j}}}{V},\;b = \frac{{{C_0}Q + M}}{V}{\text{。}}$ (3)

 $C(t) = {C_0} + \frac{M}{Q} + \left[ {{C_1} - \left( {{C_0} + \frac{M}{Q}} \right)} \right]{e^{ - \frac{Q}{V}t}},$ (4)

 $V\ln \left[ {\frac{{C(t) - \left( {{C_0} + \frac{M}{Q}} \right)}}{{{C_1} - \left( {{C_0} + \frac{M}{Q}} \right)}}} \right] = - Qt{\text{。}}$ (5)

3 试验测试 3.1 试验情况

 图 2 通风期间舱室CO2浓度实测 Fig. 2 CO2 concentration variation during ventilation test
3.2 分析讨论 3.2.1 有效通风量计算

 图 3 A及B船舱室有效通风量计算 Fig. 3 Calculation of the effective ventilating rates

 图 4 CO2浓度理论下降速率与实测结果对比 Fig. 4 CO2 concentration variation comparison for the calculated results and tested results
3.2.2 原因分析

3.2.3 试验条件对通风时间的影响

 图 5 不同人员配置时CO2浓度理论下降速率 Fig. 5 CO2 concentration variation during ventilation with different amounts of crew

3.3 结论

1）提出有效通风量作为性能参数来评估舱室通风换气系统效能。本文所研究的某典型舰船舱室通风系统循环风量为2 000 m3/h，正常通风系统实际运行时的有效风量为1 925 m3/h，而存在送排风短路问题的通风系统有效通风量仅为687 m3/h，舰船舱室通风系统的效能可通过有效通风量的大小直观定量反映。

2）提出一种针对在役舰船的不影响船员正常活动的有效风量测试方法，以CO2作为示踪气体并将船员作为示踪气体的释放源，通过船员人数和人体标准释放速率作为计算示踪气体释放量的依据。

3）提出的集总参数数学模型可较准确地预测通风期间整个舱室污染物浓度的下降速率，本文所研究的某典型舰船通风期间CO2浓度理论下降速率与实测结果有较高的吻合度。

4 结　语

 [1] SPENGLER J D, SAMET J M, MCCARTHY J F. Indoor air quality handbook[M]. New York: McGraw-Hill Companies, Inc. 2001. [2] 潘沪湘, 陈茜, 袁海霞, 等. 某两类全封闭水面舰艇舱室空气质量调查与评价[J]. 海军医学杂志, 2013, 34 (3): 88–91. PAN Hu-xiang, CHEN Qian, YUAN Hai-xia, et al. Investigation and assessment of cabin air quality in totally enclosed surface vessels[J]. Journal of Navy Medicine, 2013, 34 (3): 88–91. [3] CHRISTOPHER A D, BARTON G. Inhalational diesel exhaust exposure in submariners: observational study[J]. Military Medicine, 2008, 173 (7): 671–676. DOI: 10.7205/MILMED.173.7.671 [4] 许建, 俞强, 朱英富. 潜艇柴油机及艇上排气系统的综合模拟研究[J]. 舰船科学技术, 1998 (4): 22–27. XU Jian, YU Qiang, ZHU Ying-fu. Synthesis simulation of the diesel and exhaust system on the submarine[J]. Ship Science and Technology, 1998 (4): 22–27. [5] 李四娣, 张建华, 俞强, 等. 潜艇负压区排气技术实艇应用对比试验研究[J]. 武汉造船, 1999 (5): 16–18. LI Si-di, ZHANG Jian-hua, YU Qiang, et al. Experimental research on negative pressure exhausting applied in the submarine[J]. Shipbuilding in Wuhan, 1999 (5): 16–18. [6] 张卫东, 王世忠, 王新海, 等. 船舶舱室空调送风优化技术[J]. 舰船科学技术, 2011, 33 (2): 121–125. ZHANG Wei-dong, WANG Shi-zhong, WANG Xin-hai, et al. The technology of air-conditioning and ventilation optimization in ship chambers[J]. Ship Science and Technology, 2011, 33 (2): 121–125. [7] 牛明田, 刘建军, 蔡林. 机舱进风围阱阻力特性数值分析及结构优化[J]. 中国舰船研究, 2014, 9 (2): 84–88. NIU Ming-tian, LIU Jian-jun, CAI Lin. Numerical simulation of engine room inlet well resistance characteristics and structural optimization[J]. Chinese Journal of Ship Research, 2014, 9 (2): 84–88. [8] 周爱民, 余涛, 沈旭东. 船舶舱室污染物传播研究进展[J]. 舰船科学技术, 2014, 36 (1): 10–15. ZHOU Ai-min, YU Tao, SHEN Xu-dong. Research advances on air contaminant transport in ship cabin[J]. Ship Science and Technology, 2014, 36 (1): 10–15. [9] 王斌, 陈红香. 船用柴油机尾气控制与净化措施研究[J]. 舰船科学技术, 2016, 38 (1): 72–75. WANG Bin, CHEN Hong-xiang. Research on the control technique of the exhaust gas from marine diesel engine[J]. Ship Science and Technology, 2016, 38 (1): 72–75. [10] ASHRAE. ASHRAE STANDARD: Ventilation for Acceptable Indoor Air Quality[S]. 2010. [11] 朱颖心, 彦启森. 建筑环境学(第二版)[M]. 北京: 中国建筑工业出版社, 2006. [12] 中国人民解放军海军. 水面舰艇舱室空气组分容许浓度:GJB7497–2012[S]. 北京: 总装备部军标发行部, 2012. [13] 余涛, 周爱民, 沈旭东. 多区域网络模型在船舶舱室污染物传播研究中的应用[J]. 舰船科学技术, 2014, 36 (8): 137–141. YU Tao, ZHOU Ai-min, SHEN Xu-dong. Application of multizone network model on contaminant transport in ship cabins[J]. Ship Science and Technology, 2014, 36 (8): 137–141.