﻿ 船用核动力装置全系统特性仿真分析研究
 舰船科学技术  2018, Vol. 40 Issue (1): 94-98 PDF

Research on emulation analysis for system performance of marine nuclear power plant
NIE Wan-yuan, FANG Wei-ming
China Ship Development and Design Center, Wuhan 430064, China
Abstract: The structure and general design of emulation analysis platform for marine nuclear power plant have been presented. The thermo-hydraulic model, control system model and man-machine interface are developed on the basis of RINSIM software platform. The said platform can perfectly simulate and evaluate performance and operational factor of marine nuclear power plant on the variable operating conditions, providing technology method for general design and digital I&C system test of marine nuclear power plant.
Key words: marine nuclear power plant     emulation analysis platform     emulation test
0 引 言

1 总体设计方案

 图 1 RINSIM软件平台架构 Fig. 1 The architecture for the software platform of RINSIM
2 数学模型分析 2.1 点堆模型

 $\begin{array}{l}\displaystyle\frac{{{\rm d}n(t)}}{{{\rm d}t}} = \displaystyle\frac{{\rho \left( t \right) - \beta }}{\varLambda }n(t) + \displaystyle\sum\limits_{i = 1}^6 {{\lambda _i}} {C_i}(t), \\\displaystyle\frac{{{\rm d}{C_i}(t)}}{{{\rm d}t}} = \displaystyle\frac{{{\beta _i}}}{\varLambda }n(t) - {\lambda _i}{C_i}(t){\text{。}}\end{array}$

2.2 两相流热工水力基本模型

1）不凝结气体质量守恒方程

 $\frac{\partial }{{\partial t}}\left( {{\alpha _g}{\rho _g}{{\rm X}_n}} \right) + \frac{1}{A}\frac{\partial }{{\partial x}}\left( {{\alpha _g}{\rho _g}{\nu _g}A} \right) = \delta {S_n}/A,$

2）汽相质量守恒方程

 $\frac{\partial }{{\partial t}}\left( {{\alpha _g}{\rho _g}} \right) + \frac{1}{A}\frac{\partial }{{\partial x}}\left( {{\alpha _g}{\rho _g}{\nu _g}A} \right) = \varGamma + \delta {S_g}/A,$

3）液相质量守恒方程

 $\frac{\partial }{{\partial t}}\left( {{\alpha _f}{\rho _f}} \right) + \frac{1}{A}\frac{\partial }{{\partial x}}\left( {{\alpha _f}{\rho _f}{\nu _f}A} \right) = - \varGamma + \delta {S_f}/A,$

4）汽相能量守恒方程

 \begin{aligned}\displaystyle\frac{\partial }{{\partial t}}\left( {{\alpha _g}{\rho _g}{u_g}} \right) + \displaystyle\frac{1}{A}\frac{\partial }{{\partial x}}\left( {{\alpha _g}{\rho _g}{u_g}{\nu _g}A} \right) + P\displaystyle\frac{{\partial {\alpha _g}}}{{\partial t}} + \frac{P}{A}\displaystyle\frac{\partial }{{\partial x}}\left( {{\alpha _g}{\nu _g}A} \right)=\\ {q_{wg}} + {q_{ig}} + (\Gamma - {\Gamma _w})h_g^* + {\Gamma _w}h_g^s + DIS{S_g} + \delta {S_{gQ}}/A{\text{。}}\end{aligned}

5）液相能量守恒方程

 \begin{aligned}\displaystyle\frac{\partial }{{\partial t}}\left( {{\alpha _f}{\rho _f}{u_f}} \right) + \frac{1}{A}\displaystyle\frac{\partial }{{\partial x}}\left( {{\alpha _f}{\rho _f}{u_f}{\nu _f}A} \right) + P\displaystyle\frac{{\partial {\alpha _f}}}{{\partial t}} + \displaystyle\frac{P}{A}\frac{\partial }{{\partial x}}\left( {{\alpha _f}{\nu _f}A} \right)=\\ {q_{wf}} + {q_{if}} + (\Gamma - {\Gamma _w})h_f^* + {\Gamma _w}h_f^s + DIS{S_f} + \delta {S_{fQ}}/A{\text{。}}\end{aligned}

6）混合相能量守恒方程

 \begin{aligned}{\alpha _g}{\rho _g}\displaystyle\frac{{\partial {v_g}}}{{\partial t}} + {\alpha _f}{\rho _f}\displaystyle\frac{{\partial {v_f}}}{{\partial t}} + \displaystyle\frac{1}{2}{\alpha _g}{\rho _g}\displaystyle\frac{{\partial v_g^2}}{{\partial x}} + \frac{1}{2}{\alpha _f}{\rho _f}\frac{{\partial v_f^2}}{{\partial x}}=\\ - \frac{{\partial P}}{{\partial x}} + \rho {B_x} - {\alpha _g}{\rho _g}{v_g}FWG - {\alpha _f}{\rho _f}{v_f}FWF - \\ \varGamma ({v_g} - {v_f}) + \delta \Delta {P_P} + \delta {S_v}{\text{。}}\end{aligned}

7）漂移流方程

 $\left( {1 - {\alpha _g}{C_0}} \right){\nu _g} - {\alpha _f}{C_0}{\nu _f} = \langle {\nu _{gj}}\rangle {\text{。}}$

3 仿真模型开发 3.1 热工模型

 图 2 反应堆冷却剂系统RINSIM节点模型 Fig. 2 The node model of reactor coolant system on the RINSIM

3.2 控制系统模型

 图 3 反应堆冷却剂流量控制原理 Fig. 3 The control principle of reactor coolant flow

 图 4 反应堆冷却剂流量控制RINSIM模型图 Fig. 4 The model diagram of reactor coolant flow control on the RINSIM

3.3 人机界面组态

4 仿真测试

4.1 稳定工况测试

4.2 变工况测试

 图 5 100%~20%降功率核动力装置主要参数变化 Fig. 5 Change of main parameters for the nuclear power plant under the 100%~20% power reduction

4.3 典型故障工况测试

 图 6 蒸汽发生器给水丧失工况下核动力装置主要参数变化 Fig. 6 Change of main parameters for the nuclear power plant under the loss of water supply for Steam generator

5 结 语

 [1] 方伟明, 张鹏飞, 许建, 等. 船舶蒸汽动力系统设计方案的仿真验证[J]. 中国舰船研究, 2012, 7 (5): 71–78. FANG Wei-ming, ZHANG Peng-fei, XU Jian, et al. The simulation verification for the design scheme of marine steam power systems[J]. Chinese Joumal of Ship Research, 2012, 7 (5): 71–78. [2] 付明玉, 边信黔, 史觊, 等. 船用核动力装置专家系统技术研究[J]. 核科学与工程, 2002, 22 (3): 220–228. FU Ming-yu, BIAN Xin-qian, SHI Ji, et al. Research on export system of marine nuclear power device[J]. Nuclear Science and Engineering, 2002, 22 (3): 220–228. [3] 高景辉, 邢宏传, 张荣华, 等. 微机型船用核动力工程仿真器系统初步设计[J]. 原子能科学技术, 2004, 38 (6): 533–536. GAO Jing-hui, XING Hong-chuan, ZHANG Rong-hua, et al. Design of compact nuclear power marine engineering simulator[J]. Atomic Energy Science and Technology, 2004, 38 (6): 533–536. [4] 朱立志. 核电站数字化仪控系统的仿真测试与验证研究[D]. 上海: 上海交通大学, 2010. ZHU Li-zhi. Verification and validation studies of nuclear power plant’s digital control system[D]. Shanghai: Shanghai Jiaotong University, 2010. [5] 史觊, 蒋明瑜, 马云青. 核电站仪控系统数字化开发仿真测试技术研究[J]. 核技术, 2005, 28 (2): 163–168. SHI Ji, JIANG Ming-yu, MA Yun-qing. Research on real-time simulation test for upgrades of digital I&C system in nuclear power plant[J]. Nuclear Techniques, 2005, 28 (2): 163–168. [6] 龚湛, 林萌, 刘鹏飞, 等. AP1000核电站仿真分析平台的研发[J]. 热力发电, 2012, 41 (3): 32–36. GONG Zhan, LIN Meng, LIU Peng-fei, et al. Development of emulation analysis platform for AP1000 nuclear power plant[J]. Thermal Power Generation, 2012, 41 (3): 32–36. [7] 艾明. 船用核动力装置仿真与控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. AI Ming. Simulation and research on control methods of marine nuclear power plant[D]. Harbin: Harbin Engineering University, 2010. [8] 侯东, 林萌, 杨宗纬, 等. 核电厂DCS闭环测试平台的开发及应用[J]. 核动力工程, 2011, 32 (4): 66–70. HOU Dong, LIN Meng, YANG Zong-wei, et al. Development and application of nuclear power plant DCS closed-loop test platform[J]. Nuclear Power Engineering, 2011, 32 (4): 66–70.