﻿ 船用大侧斜螺旋桨的噪声计算与分析
 舰船科学技术  2018, Vol. 40 Issue (1): 46-51 PDF

Calculation and analysis of marine highly skewed propeller noise
YANG Guang, FANG Yi, FENG Peng-fei
No. 91439 Unit of PLA, Dalian 116041, China
Abstract: Based on Detached Eddy Simulation (DES), bearing force of a five-blade highly skewed propeller in non-uniform flow field is calculated. The frequency-dependent bearing force fluctuation is obtained and analyzed by transforming time-dependent data. The pressure fluctuation is put as acoustic rotating dipole, then non-cavitation noise of the propeller is calculated by the method of direct boundary element method in acoustic software Virtual.Lab. The relation between propeller bearing force and its noise spectrum and directivity is explored.
Key words: propeller     bearing force     acoustic rotating dipole     non-cavitation noise
0 引　言

1 计算方法 1.1 流体计算模型

 图 1 螺旋桨模型 Fig. 1 Propeller model

 图 2 旋转域单通道网格 Fig. 2 Rotating domain structured mesh

 图 3 流体计算域网格 Fig. 3 Computation domain structured mesh

1.2 声学计算模型

 $\frac{{{\partial ^2}{\rho '}}}{{\partial {t^2}}} - c_0^2\frac{{{\partial ^2}{\rho '}}}{{\partial x_i^2}} = \frac{{{\partial ^2}{T_{ij}}}}{{\partial {x_i}\partial {x_j}}}\text{。}$ (1)

 ${T_{ij}} = \rho {u_i}{u_j} + {P_{ij}} - c_0^2\left( {\rho - {\rho _0}} \right){\delta _{ij}}\text{。}$ (2)

 ${P_{ij}} = p{\delta _{ij}} - \mu \left[ {\frac{{\partial {u_i}}}{{\partial {x_j}}} + \frac{{\partial {u_j}}}{{\partial {x_i}}} - \frac{2}{3}\frac{{\partial {u_k}}}{{\partial {x_k}}}{\delta _{ij}}} \right]\text{。}$ (3)

Curle将Lighthill理论推广到考虑静止固体边界的影响。Ffowcs Williams和Hawkings进一步考虑了运动壁面的影响，得到FW-H方程：

 $\begin{split}& \displaystyle\frac{1}{{c_0^2}}\frac{{{\partial ^2}{p'}}}{{\partial {t^2}}} - {\nabla ^2}{p'} = \frac{\partial }{{\partial t}}\left\{ {\left[ {{\rho _0}{v_n} + \rho \left( {{u_n} - {v_n}} \right)} \right]\delta \left( f \right)} \right\} - \\& \displaystyle\frac{\partial }{{\partial {x_i}}}\left. {\left\{ {\left[ {{P_{ij}}{n_j} + \rho {u_i}\left( {{u_n} - {v_n}} \right)} \right]} \right.\delta \left( f \right)} \right\} + \frac{{{\partial ^2}}}{{\partial {x_i}\partial {x_j}}}\left\{ {{T_{ij}}H\left( f \right)} \right\}\text{。}\end{split}\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ (4)

 $L \leqslant c/6{f_{\max }}\text{，}$ (5)

 图 4 声学网格 Fig. 4 Acoustic mesh

 图 5 螺旋桨噪声计算流程 Fig. 5 Flow chart of propeller noise prediction
2 螺旋桨轴承力和噪声分析 2.1 轴承力计算及分析

 图 6 盘面处伴流场轴向速度云图 Fig. 6 Axial velocity contour of nominal wake field at paddle disk

 图 7 压力面压力云图 Fig. 7 Pressure contours of pressure blade

 图 8 吸力面压力云图 Fig. 8 Pressure contours of suction blade

 图 9 单桨叶频域内轴承力 Fig. 9 Bearing force of single blade in frequency domain

 图 10 五个桨叶频域内轴承力 Fig. 10 Bearing force of propeller in frequency domain

 ${\rm{BPF}} = n \times N \times r\text{，}$ (6)
 ${\rm{PSF}} = n \times r\text{。}$ (7)

2.2 噪声计算及分析

 $SPL = 10\log (\sum\limits_{i = 1}^{{f_t}} {{{10}^{0.1SPL(i)}}} )\text{。}$ (8)

 图 11 声场监测点 Fig. 11 Monitor points of acoustic field

 图 12 x轴监测点噪声频谱曲线 Fig. 12 The acoustic spectrum curves at x direction monitor points

 图 13 y轴监测点噪声频谱曲线 Fig. 13 The acoustic spectrum curves at y direction monitor points

 图 14 桨盘面噪声指向性 Fig. 14 Noise directivity of paddle disk

 图 15 轴向纵剖面噪声指向性 Fig. 15 Noise directivity of the axial longitudinal section
3 结　语

1）单桨叶轴向脉动压力幅值出现在轴频和倍轴频附近处，5个桨叶轴向脉动压力幅值出现在叶频和倍叶频附近。

2）声压随着距离的增加而减小，在距离桨盘面圆心相同距离处轴向总噪声级最小。y轴，z轴噪声幅值出现在轴频和倍轴频附近处，与单桨叶轴向脉动压力规律一致；x轴噪声幅值出现在叶频和倍叶频附近，与5个桨叶轴向脉动压力规律一致。1阶叶频处桨叶脉动压力对总声压级影响最大。

3）螺旋桨一阶叶频处，桨盘面的噪声指向性受伴流场的不均匀性影响较小，轴向纵剖面的噪声指向性上下游对称；2阶和3阶叶频处，桨盘面的噪声指向性受伴流场的不均匀性影响较大，轴向纵剖面的噪声指向性下游声压大于上游。

 [1] SEOL H, SUH J, LEE S. Development of hybrid method for the prediction of underwater propeller noise[J]. Journal of Sound and vibration, 2005, 288 (1–2): 345–360. [2] 苏玉民, 窦凤祥, 刘业宝, 等. 螺旋桨无空泡噪声的研究[J]. 武汉理工大学学报: 交通科学与工程版, 2013, 37 (5): 895–899. Su Yu-min, DOU Feng-xiang, LIU Ye-bao, et al. Study of non-cavitating propeller noise[J]. Journal of Wuhan University of Technology (Transportation Science & Engineening), 2013, 37 (5): 895–899. [3] 王超, 黄胜. 螺旋桨噪声预报方法的综述[C]//黑龙江省造船工程学会2008年学术年会论文集, 2008. [4] 赵小龙, 熊鹰. 预报螺旋桨噪声的方法[J]. 舰船科学技术, 2005, 27 (2): 42–45. ZHAO Xiao-long, XIONG Ying. The method of predicting propeller noise[J]. Ship Science and Technology, 2005, 27 (2): 42–45. [5] 谢剑波, 周其斗. 非均匀流场中螺旋桨线谱噪声指向性分析[J]. 中国舰船研究, 2010, 5 (6): 6–11. XIE Jian-bo, ZHOU Qi-dou. Directivity prediction on tone noise of propeller operating in non-uniform flows[J]. Chinese Journal of Ship Research, 2010, 5 (6): 6–11. [6] KATO C. Applications of fully-resolved large eddy simulation to unsteady fluid flow and aeroacoustic preditions[C]//International Symposium on Turbulence and Shear Flow Phenomena, TSFP-7, Ottawa, Canada. [7] 黄璐, 陈立. 螺旋桨建模方法及敞水性能研究[J]. 舰船电子工程, 2014, 34 (8): 78–88. HUANG Lu, CHEN Li. Research on modeling method of propeller[J]. Ship Electronic Engineering, 2014, 34 (8): 78–88. [8] 王超. 螺旋桨水动力性能、空泡及噪声性能的数值预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. [9] LIGHTHILL M J. On sound generated aerodynamically. PartⅠ.General theory[M].Proc.R. Soc. London Ser. A 211:564–587. [10] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and sengineering Sciences, 1969, 264 (1151): 321–342. DOI: 10.1098/rsta.1969.0031