﻿ 舰船自动智能避碰数学模型及其仿真研究
 舰船科学技术  2017, Vol. 39 Issue (10): 164-169 PDF

Research on automatic mathematical model of ship's automatic intelligent collision and its computer simulation
BAO Hong-yang
Department of Navigation, Nantong Vocational and Technical Shipping College, Nantong 226010, China
Abstract: In order to improve the safety and efficiency of ship navigation, to achieve the best boat effect, the need for ship automatic intelligent collision avoidance digital model to study. Based on the analysis of the risk of collision avoidance, the current model can realize the automatic collision avoidance of ships by means of artificial intelligence, evolutionary computation and soft computing. There is a problem that the accuracy of collision avoidance is low. In this paper, a new mathematical model of automatic collision avoidance of ships is proposed. First, the situation of ship encounters is judged. Then, the ship collision risk judgment model is established to predict the recovery of the ship after the automatic intelligent collision avoidance whether the ship has arrived, and whether the ship can be re-deployed immediately to clear the target ship or all other target ships. Finally, according to the ship collision risk judgment results, the current ship potential collision risk, for example, the establishment of ship automatic intelligence collision mathematical model. Computer simulation experiments show that the proposed model can achieve the ship automatic intelligent collision avoidance.
Key words: ship     automatic     intelligent collision avoidance     mathematical model
0 引　言

1 舰船自动智能避碰数学模型研究 1.1 舰船会遇态势判断

1）舰船对遇态势：当2艘舰船在相反或接近相反的航向上相遇至有构成碰撞风险的态势，即Q≤5°，且∆C在174°~186°之间。

2）舰船的右舷交叉相遇：2艘舰船首向交叉，且目标舰船位于本舰船右舷。根据舰船会遇角度不同还可以分为：

①舰船右舷小角度交叉相遇：Q＜45°，且∆C在186°~210°之间；

②舰船右舷大角度交叉相遇：Q＜112.5°，且∆C在210°~360°之间。

3）舰船的左舷交叉相遇：2艘舰船首向交叉，且目标舰船位于本舰船左舷。根据舰船会遇角度不同还可以分为：

①舰船左舷小角度交叉相遇：Q＜45°，且∆C在150°~174°之间；

②舰船左舷大角度交叉相遇：Q＜112.5°，且∆C在0°~150°之间。

 $\left\{ \begin{array}{l}{V_{xo}} = {V_o} \cdot \sin {C_o}\text{，}\\{V_{yo}} = {V_o} \cdot \cos {C_o}\text{。}\end{array} \right.$ (1)

 $\left\{ \begin{array}{l}{V_{xt}} = {V_t} \cdot \sin {C_t}\text{，}\\{V_{yt}} = {V_t} \cdot \cos {C_t}\text{。}\end{array} \right.$ (2)

1）在xy轴上的相对运动速度矢量分别为

 $\left\{ \begin{array}{l}{V_{xR}} = {V_{xt}} - {V_{xo}}\text{，}\\{V_{yR}} = {V_{yt}} - {V_{yo}}\text{。}\end{array} \right.$ (3)

2）在xy轴上的相对速度大小计算表达式为

 ${V_R} = \sqrt {V_{xR}^2 + V_{yR}^2} \text{，}$ (4)

3）在xy轴上相对航行的速度为

 ${C_R} = \arctan \frac{{{V_{xR}}}}{{{V_{yR}}}} + \alpha \text{。}$ (5)

VyR＜0时，α=180°；当VxR≥0时，分为2种情况，即VxR＞0时，α=0°；VxR=0时，α=360°。

 ${\alpha _t} = \arctan \frac{{{x_t} - {x_0}}}{{{y_t} - {y_0}}} + \alpha \text{。}$ (6)

 ${\theta _t} = {\alpha _t} - {C_o}\text{。}$ (7)

 ${C_t} = \left| {{C_t} - {C_o}} \right|\text{。}$ (8)

 $DCPA = d\sin ({C_R} - {\alpha _t} - π )\text{，}$ (9)
 $TCPA = d\cos ({C_R} - {\alpha _t} - π )\text{。}$ (10)

1.2 预测舰船碰撞风险判断模型

ZXFA=0时

 $DCPA\left[ i \right] = 0.725 \times SDA\max \left[ i \right]\text{。}$ (11)

ZXFA=1时

 $DCPA\left[ i \right] \text{≥} 0.725 \times SDA\max \left[ i \right]\text{，}$ (12)
 $TCPA\left[ i \right] < 0.725 \times SDA\max \left[ i \right]{\rm and} \; TCPA\left[ i \right] > 0\text{。}$ (13)

1.3 舰船自动智能避碰数学模型的建立

1）假设N=1，满足式（11），且ZXFA=0，或者满足式（12），且ZXFA=1，则判断目标舰船不存在潜在碰撞风险，设定WX[i]=0，转到步骤4；

2）如果ZXFA=0，且N＞1：

3）假设满足上述式（12）或者满足上述式（13），且TC[i]≥TR、或者满足上述式（13）且满足以下条件：

 $(TCPA\left[ i \right] - TR) > 25\min {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm or}{\kern 1pt} {\kern 1pt} TR > 30\min \text{，}$ (14)

4）根据风险舰船累积数量WX总体判断是否存在碰撞风险；

2 实验结果与分析

2.1 模拟舰船对遇态势的案例

 图 1 DCPA和CRI变化的历时曲线 Fig. 1 The diachronic curve of DCPA and CRI
2.2 舰船追越态势仿真试验

 图 2 DCPA和CRI变化的历时曲线 Fig. 2 The diachronic curve of DCPA and CRI
2.3 舰船交叉态势仿真实验

 图 3 DCPA和CRI变化的历时曲线 Fig. 3 The diachronic curve of DCPA and CRI
2.4 多舰船会遇态势仿真实验

 图 4 DCPA和CRI变化的历时曲线 Fig. 4 The diachronic curve of DCPA and CRI
3 结　语

 [1] 陈姚节, 李爽, 范桓, 等. 基于速度矢量坐标系的多船自动避碰研究[J]. 计算机仿真, 2015, 32 (6): 420–424. CHEN Yao-jie, LI Shuang, FAN Huan, et al. Automatic collision avoidance of multi-ships based on velocity vector coordinate[J]. Computer Simulation, 2015, 32 (6): 420–424. [2] 管小清, 常青, 梁冠豪, 等. 一种冗余机械臂的多运动障碍物避障算法[J]. 计算机测量与控制, 2015, 23 (8): 2802–2805. GUAN Xiao-qing, CHANG Qing, LIANG Guan-hao, et al. Multiple mobile obstacles avoidance algorithm for redundant manipulator[J]. Computer Measurement & Control, 2015, 23 (8): 2802–2805. [3] 尹新城, 胡勇, 牛会敏. 未知环境中机器人避障路径规划研究[J]. 科学技术与工程, 2016, 16 (33): 221–226. YIN Xin-cheng, HU Yong, NIU Hui-min. Path planning study for robot obstacle avoidance in unknown environment[J]. Science Technology and Engineering, 2016, 16 (33): 221–226. DOI: 10.3969/j.issn.1671-1815.2016.33.040 [4] 周恺. 信息素模糊逻辑导引的机器人室内避障算法[J]. 科技通报, 2015, 31 (12): 220–222. ZHOU Kai. Indoor robot obstacle avoidance algorithm introduction of pheromone fuzzy logic guidance[J]. Bulletin of Science and Technology, 2015, 31 (12): 220–222. DOI: 10.3969/j.issn.1001-7119.2015.12.079 [5] 刘彦戎. 基于STC89C51RC单片机的智能遥感避障小车的系统设计[J]. 电子设计工程, 2017, 25 (3): 45–48. LIU Yan-rong. Design of intelligent obstacle avoidance car remote sensing system based on STC89C51RC microcon-troller[J]. Electronic Design Engineering, 2017, 25 (3): 45–48. [6] 曹海. 人工免疫算法的船舶避碰智能策略研究[J]. 舰船科学技术, 2016, 38 (2): 10–12. CAO Hai. Research on intelligent strategy of ship collision avoidance of artificial immune algorithm[J]. Ship Science and Technology, 2016, 38 (2): 10–12. [7] 贺益雄, 黄立文, 牟军敏, 等. 交叉相遇局面让路船自动避碰行动方案[J]. 哈尔滨工程大学学报, 2015 (8): 1024–1029. HE Yi-xiong, HUANG Li-wen, MOU Jun-min, et al. A scheme for automatic collision avoidance of a give-way vessel in the crossing situation[J]. Journal of Harbin Engineering University, 2015 (8): 1024–1029. [8] 熊勇, 贺益雄, 黄立文. 基于速度障碍的多船自动避碰控制方法[J]. 中国航海, 2015, 38 (3): 46–51. XIONG Yong, HE Yi-xiong, HUANG Li-wen. Multi-ship collision avoiding control considering velocity obstacle[J]. Navigation of China, 2015, 38 (3): 46–51. [9] 吕红光, 尹勇, 尹建川. 混合智能系统在船舶自动避碰决策中的应用[J]. 大连海事大学学报, 2015, 41 (4): 29–36. LV Hong guang, YIN Yong, YIN Jian chuan. Application of hybrid intelligent systems in automatic collision avoidance decision-making for ships[J]. Journal of Dalian Maritime University, 2015, 41 (4): 29–36. [10] 吴蓓. 船舶避碰中灰色数据挖掘研究[J]. 舰船科学技术, 2016, 38 (9A): 151–153. WU Bei. The research of gray data mining algorithm in the ship collision avoidance system[J]. Ship Science and Technology, 2016, 38 (9A): 151–153.