﻿ 管路系统低噪声弹性支撑安装研究
 舰船科学技术  2017, Vol. 39 Issue (10): 92-96 PDF

1. 海军工程大学 动力工程学院，湖北 武汉 430033;
2. 船舶振动噪声重点实验室，湖北 武汉 430033

Pipeline low noise elastic support installation method research
DAI Qing-shan1,2, ZHU Shi-jian1,2, ZHANG Zhen-hai1,2
1. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China;
2. National Key Laboratory on Ship Vibration and Noise, Wuhan 430033, China
Abstract: Pipeline’s elastic support is the main measure to reduce pipeline system vibration energy transfer to the hull structure, But there are many elastic supports in the ship pipeline system and part of pipeline’s elastic supports connected to the hull directly due to installation limitations, So that the elastic support is also a kind of important vibration transmission. This paper obtained frequency response characteristic of each elastic support’s unit in the pipeline system under unit excitation by means of Abaqus finite element simulation, and the distance between two elastic supports, the stiffness of elastic supports and the location of elastic supports various parameters’ influence on the vibration and noise characteristics are analyzed, And then presented the low noise installation methods of elastic support. Provided significant references to the low noise ship pipeline system elastic support design.
Key words: pipeline     vibration and noise     elastic support     low noise installation
0 引　言

1 管路系统弹性支撑数学模型

 图 1 管路系统典型弹性支撑结构示意图 Fig. 1 Pipeline system typical elastic support structure diagram

 图 2 弹性支撑振动系统模型 Fig. 2 Elastic support vibration system model

$k = k' + jk''$ 代表弹性元件复刚度，其中 $k'$ 代表橡胶弹性元件的单向位移刚度， $k''$ 为橡胶阻尼特性的结构阻尼系数。再设管路系统质量为m，位移量为x，系统所受到的激励力为 $F(t) = {F_0}{e^{j\omega t}}$ ，则其运动微分方程为[10]

 $m\ddot x + (k' + jk'')x = {F_0}{e^{j\omega t}}\text{。}$ (1)

 $- m{\omega ^2}X + (jk'' + k')X{e^{j\omega t}} = {F_0}{e^{j\omega t}},$ (2)
 $X = \frac{{{F_0}}}{{k' - m{\omega ^2} + jk''}}\text{。}$ (3)

 ${F_T}(t) = \frac{{{F_0}(k' + jk'')}}{{k' - m{\omega ^2} + jk'}}{e^{j\omega t}}\text{。}$ (4)

 ${T_A} = \frac{{\left| {{F_{T0}}} \right|}}{{{F_0}}} = \sqrt {\frac{{1 + {\eta ^2}}}{{{{\left( {1 - \frac{{{\omega ^2}}}{{{\omega _n}^2}}} \right)}^2} + {\eta ^2}}}} ,$ (5)

2 管路系统弹性支撑数值计算模型 2.1 模型参数

DN80管路参数如表1所示，管路弹性支撑有限元模型的材料属性如表2所示。

2.2 基于Abaqus的管路弹性支撑有限元模型

 图 3 管路、弹性支撑和铺板的Abaqus模型 Fig. 3 Piping, elastic support and plank Abaqus model
3 弹性支撑安装因素分析 3.1 弹性支撑间距影响

 图 4 支撑间距为0.5 m管路支撑点响应 Fig. 4 0.5 m support spacing line support response

 图 5 支撑间距为1 m管路支撑点响应 Fig. 5 1 m support spacing line support response

 图 6 支撑间距为1.5 m管路支撑点响应 Fig. 6 1.5 m support spacing line support response

3.2 弹性支撑刚度影响

 图 7 不同支撑刚度下支撑点的响应 Fig. 7 The response of the support point under different support stiffness

 图 8 100 Hz以下船体振动总级随弹性支撑刚度变化曲线 Fig. 8 Hull vibration level below 100 Hz change with elastic support stiffness curve

3.3 弹性支撑位置影响

 图 9 支撑安装在舱壁上的频谱图 Fig. 9 Support installed in the tank wall spectrum

 图 10 支撑安装在耐压壳体上的频谱图 Fig. 10 Support installed in the pressure shell spectrum

 图 11 支撑安装在铺板上的频谱图 Fig. 11 Support installed in the planking spectrum

4 结　语

1）合理选择管路弹性支撑间距对管路低噪声安装有重要意义。对同一规格的管道，使用不同的支撑或安装在船体不同的位置，根据振动衰减的需要，应对其弹性支撑提出不同的要求，支撑布置合理性的主要依据是支撑间的振动衰减特性，振动衰减越大、频段越宽就认为布置越合理。为了获得较好的隔振效果，对不同通径的管路，通过数值计算获得了支撑布置间距对于上述DN80管最佳支撑间距为800～1 200 mm。

2）合理选择管路弹性支撑的刚度参数有利于加强弹性支撑管路系统的隔振效果。管路设计弹性支撑时，选用的弹性元件的刚度要适中，支撑元件刚度要尽量的大，才能达到良好的管路低噪声安装效果。仿真计算表明管路刚度为8.4×106 N/m时管路系统和船体耦合振动较弱，隔振效果良好。

3）管路安装在较强的结构上时，对实现支撑与船体结构的阻抗失配比较有利，更有利于管路的隔振。进一步可以得出结论为实现管路的低噪声安装弹性支撑最好布置在结构比较强的舱壁或者耐压壳体上。

 [1] 尹志勇, 钟荣, 刘钟族. 管路系统振动噪声控制技术研究现状与展望[J]. 舰船科学技术, 2006, 2 : 23–28. Zhi-yong YIN, ZHONG Rong, LIU Zhong-zu. Piping system vibration and noise control technology research status and prospect[J]. Journal of Marine Science and Technology, 2006, 2 : 23–28. [2] LIG X, PAIDOUSSIS M P. Stability, double degeneracy and chaos in cantilevered pipes conveying fluid[J]. International Journal of Non-linear Mechanics, 1994, 29 (1): 83–107. DOI: 10.1016/0020-7462(94)90054-X [3] 蔡标华, 俞健, 白亚鹤. 舰船管路系统弹性减振设计与实验[J]. 舰船科学技术, 2011, 11 : 61–64. Biao-hua CAI, Jian YU, Ya-he BAI. Ship piping system elastic vibration reduction design and experiment[J]. Journal of Ship Science and Technology, 2011, 11 : 61–64. DOI: 10.3404/j.issn.1672-7649.2011.06.015 [4] 柯兵, 周进华. 低噪声管路系统设计研究[J]. 舰船科学技术, 2006, 2 : 117–120. Bing KE, Jin-hua ZHOU. Low noise pipe system design and research[J]. Journal of Ship science and technology, 2006, 2 : 117–120. [5] HE Tao, SUN Yu-dong, WU Wen-wei, et al. Low noise collocation on fluid pipeline system[J]. Journal of Ship Science and Technology, 2015, 9 : 1149–1158. [6] 王艳林, 王自东, 宋卓斐, 王强松. 潜艇管路系统振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2008, 12 : 34–38. Yan-lin WANG, Zi-dong WANG, Zhuo-fei SONG, Qiang-song WANG. The vibration and noise control technology of present situation and the development of submarine pipeline system[J]. Journal of Ship Science and Technology, 2008, 12 : 34–38. DOI: 10.3404/j.issn.1672-7649,2008.01.004 [7] 李伟刚, 王春健, 李兵尚. 潜艇液压系统管路振动与噪声的分析控制[J]. 机床与液压, 2011, 7 : 70–73. Wei-gang LI, Chun-jian WANG, Bing-shang LI. the vibration analysis and noise control of submarine hydraulic pipeline system[J]. Journal of Hydraulic and Machine Tools, 2011, 7 : 70–73. DOI: 10.3969/j.issn.1001-3881.2011.04.022 [8] 周艳丽, 陆波. 飞机液压管路支撑的有限元建模方式对应力分析的影响[J]. 民用飞机设计与研究, 2014, 113 : 84–87. Yan-li ZHOU, Bo LIU. The influence of finite element modeling of plane hydraulic line support on stress analysis[J]. Journal of Civil Aircraft Design and Research, 2014, 113 : 84–87. DOI: 10.3969/j.issn.1674-9804.2014.02.023 [9] 闫辉, 姜洪源, 李瑰贤, 崔虎. 航空发动机管路支撑用钢丝隔振器仿真研究[J]. 航空学报, 2006, 11 : 1080–1084. Hui YAN, Hong-yuan JIANG, Gui-xian LI, Hu CUI. Aeroengine pipe support wire vibration isolator simulation[J]. Journal of Aviation, 2006, 11 : 1080–1084. DOI: 10.3321/j.issn:1000-6893.2006.06.017 [10] 施引, 朱石坚, 何琳. 舰船动力机械噪声及其控制[M]. 北京. 国防工业出版社, 1990. SHI Yi, ZHU Shi-jian, HE Lin. Ships machinery noise and its control[M]. Beijing. National defense industry press, 1990.