﻿ 潜艇围壳舵和首舵水动力性能比较
 舰船科学技术  2017, Vol. 39 Issue (10): 22-28 PDF

Comparison between hydrodynamic performance of sail rudder and bow rudder on submarine
DING Zi-you, GONG Shi-qi, WANG Zhi-lin, WANG Xian-zhou, FENG Da-kui
School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Tecnology, Wuhan 430074, China
Abstract: Hydrodynamic performance of the fore horizontal rudders installed on the submarine plays an important role on the vertical stability and maneuverability of submarine. At first, the paper uses commercial code fluent 14.0 to calculate the drag of Suboff, the drag, lift of DTMB rudder. Simulation results show good match with experimental results. Then the drag, lift characteristic of Suboff with sail rudder and Suboff with bow rudder are calculated. The difference between them, the influence on the pressure distribution of bare hull and the influence on wake flow field are analyzed. The results show that when rudder angle is the same, the difference between the drag of sail rudder and bow rudder is small. The lift of sail rudder is bigger than that of bow rudder. When rudder angle is the same, the difference of total drag is small, while the total lift and total moment of Suboff+bow rudder is bigger than those of Suboff+sail rudder. The rudder angle change of sail rudder has relatively small influence on the pressure distribution when comparing with that of bow rudder. When rudder angle of bow rudder and sail rudder is big, there will be obvious influence on horizontal tails.
Key words: sail rudder     bow rudder     hydrodynamic performance     Suboff     numerical study
0 引 言

1 控制方程和RNG k-ε湍流模型

 $\frac{{\partial \overline {{u_i}} }}{{\partial x}} = 0,$ (1)

RANS方程有如下形式：

 $\rho \frac{{\partial \overline {{u_i}} }}{{\partial t}} + \rho \overline {{u_j}} \frac{{\partial \overline {{u_i}} }}{{\partial t}} = - \frac{{\partial \bar p}}{{\partial {x_i}}} + \mu \frac{{{\partial ^2}\overline {{u_i}} }}{{\partial {x_i}\partial {x_j}}} - \rho \frac{{\partial \overline {{{u'}_i}{{u'}_j}} }}{{\partial {x_j}}} + \rho \overline {{f_i}},$ (2)

 $\frac{{\partial \left( {{\rm{\rho k}}} \right)}}{{\partial t}} + \frac{{\partial \left( {{\rm{\rho k}}\overline {{u_i}} } \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {{a_k}{\mu _{eff}}\frac{{\partial k}}{{\partial {x_j}}}} \right] + {G_k} - \rho \varepsilon ,$ (3)

 $\frac{{\partial \left( {{\rm{\rho }}\varepsilon } \right)}}{{\partial t}} + \frac{{\partial \left( {{\rm{\rho }}\varepsilon \overline {{u_i}} } \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {{a_\varepsilon }{\mu _{eff}}\frac{{\partial \varepsilon }}{{\partial {x_j}}}} \right] + \frac{{{C_{1\varepsilon }}}}{k}{C_{2\varepsilon }} - \rho \frac{{{\varepsilon ^2}}}{k},$ (4)

2 数值计算 2.1 CFD计算模型

 ${C_d} = \frac{{{F_d}}}{{\frac{1}{2}\rho {v^2}A}},$ (5)

 ${C_l} = \frac{{{F_l}}}{{\frac{1}{2}\rho {v^2}A}},$ (6)

Suboff带舵模型的阻力、升力、力矩系数定义如下：

 ${C_d} = \frac{{{F_d}}}{{\frac{1}{2}\rho {v^2}S}}\text{，}$ (7)

 ${C_l} = \frac{{{F_l}}}{{\frac{1}{2}\rho {v^2}S}}\text{，}$ (8)

 ${C_m} = \frac{M}{{\frac{1}{2}\rho {v^2}SL}}\text{。}$ (9)

 图 1 舵外形 Fig. 1 The figure of the rudder

 图 2 Suboff+首舵和Suboff+围壳舵 Fig. 2 SUBOFF+bow rudder and SUBOFF+sail rudder
2.2 计算域和边界条件

 图 3 计算流域图以及边界条件 Fig. 3 Computational domain and boundary condition

2.3 数值方法验证和网格独立性

3 计算结果和分析 3.1 首舵和围壳舵升阻力特性分析

 图 4 阻力、升力系数比较，v=16 kn Fig. 4 Comparison of drag, lift coefficient, v=16 kn

 图 5 翼有无翼地效应的升力和攻角关系 Fig. 5 The wing in and out of ground effect
3.2 潜艇带舵模型计算结果和分析

Suboff带围壳舵模型的总阻力和Suboff带首舵模型的总阻力相差很小。Suboff带首舵模型的总升力、总力矩比Suboff带围壳舵模型的总升力、总力矩大。当舵角为5°时，升力最大相对增量为171.5%，

 图 6 总阻力、总升力系数对比，v=16 kn Fig. 6 Comparison of total drag, lift coefficient, v=16 kn

 图 7 总力矩系数对比，v=16 kn Fig. 7 Comparison of total moment coefficient, v=16 kn
3.3 转舵对流场的影响

 图 8 光艇体、围壳和尾翼的升力，v=16 kn Fig. 8 Lift of hull, sail, tail, v=16 kn

 图 9 Suboof+首舵模型压力分布，舵角为–15° Fig. 9 Pressure distribution of the Suboof+ bow rudder model, bow rudder angle –15°

 图 10 Suboof+首舵模型压力分布，舵角为15° Fig. 10 Pressure distribution of the Suboof+ bow rudder model, bow rudder angle 15°

 图 11 涡结构，首舵舵角为15°，Q准则涡量等值面，Q=80 Fig. 11 Vortex structure, bow rudder angle 15°, iso-surface of Q-Criteria atQ=80

 图 12 Suboof+围壳舵模型压力分布，舵角为15° Fig. 12 Pressure distribution of the Suboof+ sail rudder model, sail rudder angle 15°

 图 13 涡结构，围壳舵舵角为15°，Q准则涡量等值面，Q=80 Fig. 13 Vortex structure, sail rudder angle 15°, iso-surface of Q-Criteria atQ=80

 图 14 y=3.8 m切面轴向速度等值图，首舵舵角为0° Fig. 14 Axial velocity contour at y=3.8 m, bow rudder angle 0°

 图 15 y=3.8 m切面轴向速度等值图，首舵舵角为15° Fig. 15 Axial velocity contour at y=3.8 m, bow rudder angle 15°

 图 16 2D切面（x=–0.2 m）水平尾翼周围Y 方向速度分布 Fig. 16 2D slice (x=–0.2 m) Y Velocity distribution around horizontal tail

 图 17 2D切面（x=–0.2 m） 水平尾翼周围压力度分布，首舵舵角为0° Fig. 17 2D slice (x=–0.2 m) pressure distribution around horizontal tail, bow rudder angle 0°

 图 18 2D切面（x=–0.2 m） 水平尾翼周围压力度分布，首舵舵角为15° Fig. 18 2D slice (x=–0.2 m) pressure distribution around horizontal tail, bow rudder angle 15°
4 结 语

 [1] BURCHER R, RYDILL L J. Concepts in submarine design [M]. Cambridge University Press, 1995. [2] BULL P. The validation of CFD predictions of nominal wake for the SUBOFF fully appended geometry[C]//21st Symposium on Naval Hydrodynamics, June. 1996: 1061–1076. [3] BENSOW R, PERSSON T, FUREBY C, et al. Large eddy simulation of the viscous flow around submarine hulls[C]//25th ONR Symposium on Naval Hydrodynamics. 2004. [4] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 01 : 1–13. ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Validation of numerical simulation on resistance and flow field of submarine and numerical optimization of submarine hull form[J]. Journal of Ship Mechanics, 2005, 01 : 1–13. DOI: 10.3969/j.issn.1007-7294.2005.01.001 [5] 邓峰, 戴余良, 陈志法, 等. 基于CFD的水下回转体高速运动阻力预报精度影响研究[J]. 舰船科学技术, 2016, 38 (03): 22–26. DENG Feng, DAI Yu-liang, CHEN Zhi-fa, et al. Research on resistance forecast accuracy of high-speed underwater revolving object based on CFD[J]. Ship Science and Technology, 2016, 38 (03): 22–26. [6] 刘明静, 马运义, 吴军. 潜艇艏舵绕流场的数值模拟[J]. 中国舰船研究, 2010, 05 : 40–43. LIU Ming-jing, MA Yun-yi, WU Jun. Numerical Simulation on the Flow Around Fore Hydroplane of Submarine[J]. Chinese Journal of Ship Research, 2010, 05 : 40–43. DOI: 10.3969/j.issn.1673-3185.2010.04.009 [7] YAKHOT V, ORSZAG S A. Renormalization-group analysis of turbulence[J]. Physical review letters, 1986, 57 (14): 1722. DOI: 10.1103/PhysRevLett.57.1722 [8] GROVES N C, HUANG T T , CHANG M S. Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471)[R]. David Taylor Research Center Bethesda md Ship Hydromechan-ICS DEPT, 1989. [9] WHICKER L F, FEHLNER L F. Free-stream characteristics of a family of low-aspect-ratio, all-movable control surfaces for application to ship design[R]. David Taylor Model Basin WASHINGTON DC, 1958. [10] LIU H L, HUANG T T. Summary of DARPA SUBOFF experimental program data[R]. Naval Surface Warfare Center Card-erock DIV BETHESDA MD Hydromechanics Direc-Torate, 1998. [11] HURT H H. Aerodynamics for naval aviators [M]. Skyhorse Pub. 1965.