﻿ 高精度石英挠性加速度测量装置的结构设计与研究
 舰船科学技术  2017, Vol. 39 Issue (9): 190-193 PDF

1. 海军驻武汉七一九所军事代表室，湖北 武汉 430205;
2. 武汉第二船舶设计研究所，湖北 武汉 430205;
3. 浙江大学 航空航天学院，浙江 杭州 310027

Research on structure design of quartz-flex accelerometer
SUN Lin1, GUO Song2, WANG Lei2, SONG Kai-chen3
1. Military Representative Office of Navy Stationed in 719 Institute, Wuhan 430205,China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205,China;
3. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027,China
Abstract: Quartz-flex accelerometer is one of the key components for the Underwater vehicle Control System, the state of its performance will influence the whole system seriously. The stucture and the principle of the quartz-flex accelerometer is simply introduced in the paper firstly, then in view of the magnetic field and temperature variations affect quartz flexible accelerometer scale factor and the stability of the zero bias problem, the method of shielded structure design and temperature control structure design is put forward. The effect of optimize design is evaluated. The results show that the acceleration measurement device after structure optimization of measurement accuracy is improved significantly.
Key words: quartz-flex accelerometer     shielded structure     temperature control structure
0 引 言

1 工作原理

 图 1 加速度测量装置工作原理图 Fig. 1 Operating principle chart of quartz-flex accelerometer
2 结构设计

 图 2 加速度测量装置外形图 Fig. 2 Outside view of quartz-flex accelerometer

 图 3 加速度测量装置分解结构视图 Fig. 3 The decomposition texture view of quartz-flex accelerometer
2.1 屏蔽结构设计 2.1.1 加速度计屏蔽结构设计

 $S = A + R + {B_S}\;\text{，}$ (1)

 $A = 132x{\sqrt {f{\mu _r}\sigma } _r}\;\text{，}$ (2)
 $R = 14.6 + 10\lg \frac{{{\sigma _r}f{r^2}}}{{{\mu _r}}}\;\text{，}$ (3)
 ${B_s} = 20\lg (1 - {e^{ - 2x/\delta }})\;\text{，}$ (4)
 $\delta {\rm{ = }}\frac{{0.066}}{{\sqrt {f{\mu _r}{\sigma _r}} }}\;\text{。}$ (5)

 图 4 加速度测量装置屏蔽结构分解图 Fig. 4 The shield structure view of quartz-flex accelerometer
2.1.2 测量通道屏蔽结构设计

 图 5 测量通道屏蔽结构图 Fig. 5 Measurement channel shielding structure
2.2 温度控制结构设计 2.2.1 加速度计温度控制结构设计

 图 6 加速度测量装置温控结构视图 Fig. 6 The temperature control structure view of quartz-flex accelerometer

2.2.2 测量通道温度控制结构设计

 图 7 测量通道温控结构 Fig. 7 The heat-simulation result of quartz-flex accelerometer
3 设计效果预估 3.1 屏蔽结构设计效果预估

3.2 温度控制结构设计效果预估

 图 8 加速度测量装置温控热仿真结果图 Fig. 8 The heat-simulation result of quartz-flex accelerometer
4 结 语

 [1] 王巍. 光纤陀螺惯性系统[M]. 北京: 中国宇航出版社, 2010. [2] 高晋占. 微弱信号检测[M]. 北京: 清华大学出版社, 2011. [3] 张开东. 基于SINS/DGPS的航空重力测量方法研究[D].长沙: 国防科技大学, 2007. [4] 宋开臣. 基于平面线圈的石英挠性加速度计的初步设计[J]. 仪表技术与传感器, 2008 . DOI: 10.3969/j.issn.1002-1841.2008.01.021 [5] LI J, ZHANG K, ZHANG Q, et al. Study and Implemention of The Precise Temperature Control Used in Airborne Gravimetry[J]. 2010 8th World Congress on Intelligent Control and Automation (WCICA), 2010 : 2064–2068.