﻿ 船舶管路系统泄漏定位实验研究
 舰船科学技术  2017, Vol. 39 Issue (9): 164-168 PDF

Experimental study on ship pipeline leakage and location
WU Shao-ke, FU Li-dong, ZHANG Yue-wen, ZHANG Peng
College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
Abstract: Pipe is an important part of the ship, the pipeline leakage is inevitable due to the bad external environment. So the pipeline leakage monitoring and positioning is particularly important. The ship pipeline leakage localization experiment table is built based on the analysis of the pipeline leakage mechanism. Then the wavelet transform is used to filter the signal noise, and the signal that is filtered is imported in fluid network model. The model proves that ±3 kPa could be a threshold to determine whether the pipeline leakage or not. Finally pressure gradient method is used to locate the location that complete the aim of pipeline leakage detection and location.
Key words: pipeline leakage detection and location     wavelet transform     fluid network     SPRT     experiment
0 引 言

1 实验台的搭建 1.1 实验台设计原理

 图 1 船舶管路泄漏实验平台原理图 Fig. 1 Experimental principle diagram of pipeline leakage
1.2 实验台的选型与搭建

 图 2 数据实时采集界面 Fig. 2 The display screen of data acquisition

2 基于小波变换的数据处理

2.1 小波变换理论

 $\int_{ - \infty }^\infty {\psi (t){\rm d}t = 0}\text{，}$ (1)

$\psi (t)$ 为基小波函数，对其进行时间上的平移和尺度上的伸缩可以构成函数系：

 ${\psi _{a,b}}(t) = {\left| a \right|^{ - \frac{1}{2}}}\psi (\frac{{t - b}}{a})\text{，}$ (2)

${\psi _{a,b}}(t)$ 为子小波，a为尺度因子，反映了小波函数的周期函数；b为平移因子，反映了函数时间上的平移。

 ${W_f}(a,b) = {\left| a \right|^{ - \frac{1}{2}}}\int_R^{} {f(t)} \overline \psi (\frac{{t - b}}{a}){\rm d}t\text{，}$ (3)

${W_f}(a,b)$ 为小波系数， $\overline \psi (\displaystyle\frac{{t - b}}{a})$ $\psi (\displaystyle\frac{{t - b}}{a})$ 的复共轭函数。试验中采集到的数据一般都是离散的，设函数fkt）（k=1，2，3，…Nt表示周期），则式（4）的离散形式为：

 ${W_f}(a,b) = {\left| a \right|^{ - \frac{1}{2}}}t\sum\limits_{k = 1}^N {f(kt)} \psi (\frac{{kt - b}}{a})\text{。}$ (4)

2.2 小波基的选择

 图 3 流量信号不同小波基去噪效果对比 Fig. 3 Comparison of denoising effect of different wavelat bases

3 管路系统泄漏定位实验 3.1 基于流体网络的管路泄漏检测

 图 4 海水系统电路模型图 Fig. 4 Circuit model diagram of seawater system

 $U = {U_1} + {U_2} + {U_3} + {U_4} + \cdots {U_n} \cdots \text{。}$ (5)

 $P = {p_1} + {p_2} + {p_3} + \cdots {p_n} \cdots = \sum\limits_{i = 1}^n {{p_i}} \text{。}$ (6)

 $\Delta P = \sum\limits_{i = 1}^n {{Z_i}} {Q_M} \text{。}$ (7)

 ${R_{wT}} = {\left( {\frac{{{R_e}}}{{1185}}} \right)^{3/4}} \times {R_W} = 3.861\;{\rm{s}}/{{\rm{m}}^2} \text{，}$ (8)

 $Z(j\omega ) = R + j(\omega L - 0) = 3.861 + j1170 \text{，}$ (9)

 ${P_2} - {P_4} = \Delta {P_2} = \sum\limits_{i = 1}^n {{Z_i}} {Q_M} = 2.95 \times {10^3}\;{\rm{Pa}} \text{。}$ (10)

 图 5 P2，P4压力传感器变化趋势图 Fig. 5 Variable trend graph of pressure sensor of P2, P4

3.2 基于压力梯度法的泄漏定位研究

 图 6 P1，P4压力变化趋势图 Fig. 6 Variable trend graph of P1, P4

 ${x_0} = \frac{{{l_{12}}{l_{34}}\left( {{p_4} - {p_1}} \right) - L \times {l_{34}}\left( {{p_4} - {p_3}} \right)}}{{{l_{34}}\left( {{p_2} - {p_1}} \right) - {l_{12}}\left( {{p_4} - {p_3}} \right)}}\text{。}$ (11)

4 结 语

 [1] 陈作武. 浅谈汽油船火灾事故的成因及对策[C]//中国航海学会危险货物运输专业委员会年会论文集, 2008: 97–98. CHEN Zuo-wu. Discussion on the causes and countermeasures of the fire accident of the gasoline ship [C]// The Annual Meeting of the China Navigation Society Dangerous Goods Transportation Specialized Committee Annual Meeting, 2008: 97–98. [2] Matthaios Bimpas, Angelos Amditis, Nikolaos Uzunoglu. Design and Implementation of an Integrated High Resolution Imaging Ground Penetrating Radar for Water Pipeline Rehabilitation[J]. Water Resources Management, 2011, 25 (4): 1239–1250. DOI: 10.1007/s11269-010-9631-y [3] ATLAMAZOGLOU P E, UZUNOGLU N K. A Galerkin moment method for the analysis of an insulated antenna in a dissipative dielectric medium[J]. Transactions on Microwave Theory and Techniques, 1998, 46 (7): 988–996. DOI: 10.1109/22.701454 [4] LAY-EKUAKILLE A. Improving leak detection sensing in pipelines: AmultidimensionalapproachwithFDM[J]. SensingTechnology, 2013, 3 (5): 714–718. [5] EVANS K D, RYAN N J, MCEWAN I K. Leak location and sealing using Platelet technology TM[J]. OCEANS, 2007, 1 (4): 18–21. [6] BILLMAN L, ISERMAN R. Leak detection method for pipelines[J]. Pipes & Pipelines International, 1987 (2): 381–383. [7] MOHAMMED J R. A new simple adaptive noise cancellation scheme based on ALE and NLMS filter[J]. Services Research, 2007 : 245–254. [8] 沈国伟. 基于压力传感器的负压波法泄漏检测[J]. 传感器世界, 2005, 11 : 17–19. SHEN Guowei. The negative pressure wave method based on the pressure sensor to detect the leakage of[J]. Sensor in the world, 2005, 11 : 17–19. DOI: 10.3969/j.issn.1006-883X.2005.02.004 [9] MARCO Ferrante, BRUNO Brunone. Pipe system diagnosis and leak detection by unsteady-state tests wavelet analysis[J]. Advance in Water Resources, 2003 (26): 107–116. [10] P. Detection of partial blockage in single pipelines[J]. Hydraulic Engineering, 2006, 2 : 200–206. [11] 焦敬品, 李涌, 何存富, 等. 压力管道泄漏的声发射检测试验研究[J]. 北京工业大学学报, 2003, 29 (2): 144–146. JIAO Jingpin, LI Yong, HE Cunfu, et al. Experimental study on acoustic emission detection of pressure pipeline leak[J]. Journal of Beijing University of Technology, 2003, 29 (2): 144–146. [12] 胡瑾秋, 张来斌, 梁伟, 等. 基于谐波小波分析的管道微小泄漏诊断方法[J]. 中国石油大学学报, 2009, 33 (4): 118–124. HU Jinqiu, ZHANG Laibin, WANG Zhaohui. A method for detection of small leakage of pipelines based on harmonic wavelet analysis[J]. Journal of China University of Petroleum, 2009, 33 (4): 118–124. [13] X. Optical and Sonar Image Classification: Wavelet Packet Transform vs Fourier Transform[J]. Computer Vision and Image Understanding, 2000, 7 (9): 25–46. [14] 葛哲学, 沙威. 小波分析理论与MATLAB2007实现7[M]. 北京: 电子工业出版社. 2007. [15] YE Hao, Wang Guizeng, Fang Chongzhi. Application of wavelet transform to leak detection and location transport pipelines[J]. Engineering Simulation, 1996, 33 (13): 1025–1032. [16] 罗志昌. 流体网络理论[M]. 北京: 机械工业出版社, 1988. [17] 窦雨淋, 张涛. 舰船管路流体脉动衰减器的性能研究[J]. 中国舰船研究, 2008, 04 : 40–44. DOU Yulin, Zhang Tao. Research on the performance of the fluid pulsation attenuator of the ship's pipeline[J]. China Ship Research, 2008, 04 : 40–44. DOI: 10.3969/j.issn.1673-3185.2008.04.010 [18] 刘超, 任福安. 工程流体力学[M]. 大连: 大连海事大学出版社, 2004. 7. [19] 王兰兰. 基于负压波的输油管道泄漏检测技术研究[D]. 大庆: 东北石油大学, 2011. WANG Lan-lan. Research on oil pipeline leak detection technology based on negative pressure wave [D].Daqing: Northeast Petroleum University, 2011. [20]