﻿ 一种新型同振式矢量水听器的结构设计与性能研究
 舰船科学技术  2017, Vol. 39 Issue (9): 148-150 PDF

Structure design and performance research of a new co-vibration vector hydrophone
XIE Pan, XU Xi
No.91388 Unit of PLA, Zhanjiang 524022, China
Abstract: A new suspension system with central fixed is designed by studying the amplitude frequency characteristics of the piezoelectric accelerometer. The design scheme of the co- vibration vector hydrophone with the new suspension system is presented, and its performance is simulated. The results show that the central fixed vector hydrophone has compact structure and convenient installation, which is suitable for the installation of the underwater small size platform. It can accurately measure the sound pressure and particle velocity information in the working band.
Key words: vector hydrophone     suspension system     simulated analysis
0 引　言

 图 1 同振球型矢量水听器悬挂示意图 Fig. 1 Schematic diagram of the resonant-sphere type vector hydrophone
1 新型悬挂系统设计

 $m\frac{{{{\rm d}^2}x}}{{{\rm d}{t^2}}} + c\left( {\frac{{{\rm d}x}}{{{\rm d}t}} - \frac{{{\rm d}y}}{{{\rm d}t}}} \right) + k\left( {x - y} \right) = 0\text{。}$ (1)

 图 2 加速度计简化模型 Fig. 2 Simplified model of accelerometer

ωnζ分别为加速度计固有频率和阻尼比，y0为壳体的位移幅值，ω为壳体的振动角频率，Ur为该振动系统稳态振动位移的幅值，可求得压电加速度计的幅频特性表达式及其对应曲线为：

 $A\left( \omega \right) = \frac{{{U_r}}}{{{y_0}}} = \frac{{{{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}}}{{\sqrt {{{\left[ {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right]}^2} + {{\left[ {2\zeta \frac{\omega }{{{\omega _n}}}} \right]}^2}} }}\text{。}$ (2)
 图 3 加速度计外壳与内部质量块相对位移幅频特性曲线（ζ=0.1） Fig. 3 Relative displacement amplitude frequency characteristic curve of the shell and mass of the accelerometer (ζ=0.1)

2 新型矢量水听器设计方案

 图 4 中心固定式矢量水听器结构示意图 Fig. 4 Schematic diagram of the structure of the center fixed vector hydrophone

3 性能仿真与分析

 图 5 一维振速通道简化模型 Fig. 5 Simplified model of one dimensional velocity channel

 \left\{ \begin{aligned}& {F_s} = {v_w}\left[ {R + \frac{k}{{j\omega }} + j\omega \left( {{m_i} + {m_w}} \right)} \right] + {v_n}\left[ { - R - \frac{k}{{j\omega }}} \right],\\& 0 \!=\! {v_w}\left[ { - R - \frac{k}{{j\omega }}} \right] \!+\! {v_n}\left[ {R \!+\! \frac{k}{{j\omega }} \!+\! \left( {{R_p} \!+\! j\omega {m_n} \!+\! \frac{{{k_p}}}{{j\omega }}} \right)} \right]\text{。}\end{aligned} \right. (3)

 $\frac{{{e_{oc}}}}{{{v_s}}} \approx R{\left( {1 + \frac{k}{{{k_p}}}} \right)^{{\rm{ - }}1}}\left( {\frac{{ - {h_{33}}{t_p}}}{{c_{33}^D}}} \right),$ (4)

 ${\omega _l} = \sqrt {\frac{k}{{{m_s} + {m_i}}}} ,\;\;\;\;{\omega _h} = \sqrt {\frac{{{k_p}}}{{{m_n}}}}\text{。}$ (5)

 ${M_u} = \frac{{{e_{oc}}}}{{{v_s}}} \approx {\rm{ - 45}}{\rm{.20 V}}/{\rm{m}} \cdot {{\rm{s}}^{{\rm{ - 1}}}}\text{。}$ (6)

 $\begin{split}{M_{uL}} = & 20\log \left[ {{M_u}\left( {\frac{1}{{\rho c}}} \right)/{{\left( {{M_e}} \right)}_o}} \right] = \\& - 209.3 \; {\rm{dB}} \; {\rm{re 1V}}/{\rm{\mu Pa}}\text{。}\end{split}$ (7)

 图 6 通频带内振速通道响应曲线 Fig. 6 Channel response curve of the frequency band
4 结　语

中心固定式矢量水听器结构紧凑、安装方便，可有效扩展矢量水听器的应用空间并提高其性能与使用的方便性，对于增强水下平台的声探测能力有重要意义。但是由于悬挂系统的特殊性，使得水听器工作频率下限较高，不利于水下目标的远程测量。一方面可进一步研究改善水听器结构设计，另一种可行改善方法是构建空间阵列式的矢量阵，通过设定接收单元的接收距离，实现远程水下目标的低频探测[10]

 [1] 孙贵青, 李启虎. 声矢量传感器研究进展[J]. 声学学报, 2004, 29 (6): 481–490. SUN Guiqing, LI Qihu. Progress of study on acoustic vector sensor[J]. Chinese Journal of acoustics, 2004, 29 (6): 481–490. [2] 杨德森, 洪连进. 矢量水听器原理及应用引论[M]. 北京: 科学出版社, 2009, 1–2. [3] 张椿, 陈斌, 田忠仁. 三维同振式矢量水听器设计[J]. 声学与电子工程, 2009, 46 (4): 5–7. ZHANG Chun, CHEN Bin, TIAN Zhongren. Design of three dimensional co-vibration vector hydrophone[J]. Acoustic and electronic engineering, 2009, 46 (4): 5–7. [4] 孙贵青. 矢量水听器检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2001. SUN Gui-qing. Research on technology of detection vector hydrophone[D]. Harbin: Harbin Engineering University, 2001. [5] 陈洪娟, 杨士莪, 王智元, 等. 同振式矢量传感器设计方法的研究[J]. 声学技术, 2005, 24 (2): 80–83. CHEN Hongjuan, YANG Shie, WANG Zhiyuan, et al. Research on the design method of the co-vibration vector sensor[J]. Chinese Journal of acoustics, 2005, 24 (2): 80–83. [6] 张俊. 潜标平台下的矢量水听器悬挂系统声学性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 201. ZHANG Jun. Study on the influence of acoustic performance of submerged buoy system under the platform of the vector hydrophone suspension[D]. Harbin: Harbin Engineering University , 201. [7] 贾志富. 三维同振型矢量水听器的特性及其结构设计[J]. 应用声学, 2001, 20 (4): 15–20. JIA Zhifu. Characteristics and structural design of three-dimensional co-vibrati0n vector hydrophone[J]. Application of acoustic, 2001, 20 (4): 15–20. DOI: 10.11684/j.issn.1000-310X.2001.04.005 [8] 时胜国, 杨徳森. 弹性元件对同振型振速水听器的影响[J]. 应用声学, 2004, 23 (5): 21–26. SHI Sheng-guo, YANG De-sen. Elastic element influence on the vibration velocity hydrophone[J]. applied acoustics, 2004, 23 (5): 21–26. DOI: 10.11684/j.issn.1000-310X.2004.05.008 [9] MCCONNELL J A. Practical experiences with inertial type underwater acoustic intensity probes[J]. JASA, 2002, 27 (8): 19–21. [10] 石杰, 相敬林, 陈韶华. 间距可调的小尺寸空间十字阵对水下低频声源的被动定向[J]. 探测与控制学报, 2006, 28 (5): 12–15. SHI Jie, XIANG Jinglin, CHEN Shaohua. The passive orientation of the small size space cross array with adjustable pitch to underwater acoustic source[J]. Journal of detection and control, 2006, 28 (5): 12–15.