﻿ 水面无人艇动态避碰策略研究
 舰船科学技术  2017, Vol. 39 Issue (9): 69-73 PDF

Research on dynamic intelligent anti-collision of USV
SHANG Ming-dong, ZHU Zhi-yu, ZHOU Tao
Department of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: For the limitation of local path planning of USV, This paper puts forward the dynamic intelligent collision avoidance of USV maneuvering model. According to rules of maritime, dividing the situation for encountering, crossing and overtaking, on the base of MMG model, by changing the speed and course of USV through the collision avoidance to complete the dynamic obstacle intelligent collision avoidance of USV. The simulation results show that this method effectively complete dynamic intelligent anti-collision of USV, according the actual navigational maneuvering requirements of USV.
Key words: unmanned surface vehicle (USV)     maneuvering model     intelligent anti-collision
0 引　言

1 USV运动环境模型建立

1.1 避碰规则公约

 图 1 海事避碰规则划分图 Fig. 1 Maritime regulations for preventing collisions plans
1.2 水面无人艇运动环境模型建立和参数计算

 图 2 USV与动态障碍物运动模型 Fig. 2 Motion model of USV and dynamic obstacles

 $\begin{array}{l}{v_0} = \sqrt {v_{x0}^2 + v_{y0}^2} \text{，} \\{\phi _{\rm{0}}} = \arctan \displaystyle\frac{{{v_{x0}}}}{{{v_{y0}}}} + \alpha \text{，} \\\alpha = \left\{ {\begin{array}{*{20}{c}}{{{\rm{0}}^{\rm{o}}}},\\{{{180}^{\rm{o}}}},\\{{{180}^{\rm{o}}}},\\{{{360}^{\rm{o}}}},\end{array}} \right.\;\;\;\;\begin{array}{*{20}{c}}{if:{v_{x0}} \geqslant 0,{v_{y0}} \geqslant 0}\text{；}\\{if:{v_{x0}} \leqslant 0,{v_{y0}} \leqslant 0}\text{；}\\{if:{v_{x0}} \geqslant 0,{v_{y0}} \leqslant 0}\text{；}\\{if:{v_{x0}} \leqslant 0,{v_{y0}} \geqslant 0}\text{。}\end{array}\end{array}$

ST是动态障碍物的位置，以航速vT、首向φT前行。其中：

 $\begin{array}{l}{v_T} = \sqrt {v_{xT}^2 + v_{yt}^2} \\{\phi _T} = \arctan \displaystyle\frac{{{v_{xT}}}}{{{v_{yT}}}} + \alpha \end{array}$

 $\begin{array}{l}v{}_R = \sqrt {v_{xR}^2 + v_{yR}^2} \text{，}\\{\phi _R} = \arctan \displaystyle\frac{{{v_{xR}}}}{{{v_{yR}}}} + \alpha \text{。}\end{array}$

USV与动态障碍物之间的相对距离RT

 ${R_T} = \sqrt {{{\left( {{x_T} - {x_0}} \right)}^2} + {{\left( {{y_T} - {y_0}} \right)}^2}} \text{。}$

 $\begin{array}{l}{\alpha _T} = \arctan \displaystyle\frac{{{x_T} - {x_0}}}{{{y_T} - {y_0}}} + \alpha\text{，} \\{\alpha _0} = \arctan \displaystyle\frac{{{x_0} - {x_T}}}{{{y_T} - {y_0}}} + \alpha\text{，} \\{\theta _T} = {\alpha _T} - {\phi _0}\text{，}\\{C_T} = {\phi _T} - {\phi _0}\text{。}\end{array}$

 $\begin{array}{l}DCP{A_T} = {R_T} \cdot \sin \left( {{\phi _R} - {\alpha _T} - \pi } \right)\text{，}\\TCP{A_T} = {R_T} \cdot \cos \left( {{\phi _R} - {\alpha _T} - \pi } \right)/{v_R}\text{。}\end{array}$

 $\rho = {\left( {a \cdot DCP{A_T}} \right)^2} + {\left( {b \cdot TCP{A_T}} \right)^2}\text{。}$

2 水面无人艇操纵运动模型

 $\left\{ {\begin{array}{*{20}{c}}{X = {X_I} + {X_H} + {X_P} + {X_R}}\text{，}\\{Y = {Y_I} + {Y_H} + {Y_P} + {Y_R}}\text{，}\\{N = {N_I} + {N_H} + {N_P} + {N_R}}\text{。}\end{array}} \right.$

 $\left\{ {\begin{array}{*{20}{c}}{\sum {\overline F } = m\displaystyle\frac{{{\rm{d}}\overline {{V_G}} }}{{{\rm{d}}t}}}\text{，}\\[8pt]{\sum {\overline M } = m\displaystyle\frac{{{\rm{d}}\overline {{H_G}} }}{{{\rm{d}}t}}}\text{。}\end{array}} \right.$

 $\left\{ {\begin{array}{*{20}{c}}{m\left( {\dot u - rv - {x_G}{r^2}} \right) = \sum X }\text{，}\\{m\left( {\dot v + ru - {x_G}{r^2}} \right) = \sum Y }\text{，}\\{{I_{ZZ}}\dot r + m{x_G}\left( {\dot v + ru} \right) = \sum N }\text{。}\end{array}} \right.$
3 USV智能避碰模型

3.1 定常运动模型

 $\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + v \cdot \cos \phi \cdot t}\text{，}\\{y = {y_0} + v \cdot \sin \phi \cdot t}\text{。}\end{array}} \right.$
3.2 转向运动模型

 $\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + \int_0^1 {0.9v\cos \phi \left( t \right){\rm{d}}t} }\text{，}\\{y = {y_0} + \int_0^1 {0.9v\sin \phi \left( t \right){\rm{d}}t} }\text{。}\end{array}} \right.$

$\phi \left( t \right)$ 表示水面无人艇运动后t时刻的转头角，

 $\phi \left( t \right) = k{\delta _0}\left[ {t - \left( {T + \frac{{{t_1}}}{2} + \frac{{{T^2}}}{{{t_1}}}\left( {{e^{{t_1}/T}} - 1} \right){e^{ - t/T}}} \right)} \right]\text{，}$

3.3 变速运动模型

 $v = {v_1} + \left( {{v_0} - {v_1}} \right) \cdot \exp \left( { - \frac{{k \cdot t}}{{m + {m_x}}}} \right){\text{。}}$

3.4 USV动态避碰流程图

 图 3 动态避碰流程图 Fig. 3 Dynamic collision avoidance flowchart
3.5 USV动态避碰步骤

4 仿真实验结果与分析

4.1 对遇局面避碰仿真图

 图 4 对遇局面动态智能避碰仿真图 Fig. 4 Dynamic intelligent collision avoidance simulation map on situation
4.2 交叉局面避碰仿真图

 图 5 交叉局面动态智能避碰仿真图 Fig. 5 Dynamic intelligent collision avoidance simulation map cross situation
4.3 追越局面避碰仿真图

 图 6 追越局面动态智能避碰仿真图 Fig. 6 Dynamic intelligent collision avoidance simulation map overtaking situation
5 结　语

 [1] 庄佳园, 张国成, 苏玉民. 水面无人艇危险规避方法[J]. 东南大学学报, 2013, 43 (SⅠ): 126–130. ZHUANG Jia-yuan, ZHANG Guo-cheng, SU Yu-min. USV hazard workaround[J]. Southeast University learned journal, 2013, 43 (SⅠ): 126–130. [2] 吴博, 熊勇, 文元桥. 基于速度障碍原理的无人艇自动避碰算法[J]. 大连海事大学学报, 2014, 40 (2): 13–16. WU Bo, XIONG Yong, WEN Yuan-qiao. Based on the principle of USV speed barrier automatic collision avoidance algorithm[J]. Dalian Maritime University, 2014, 40 (2): 13–16. [3] 茅云生, 宋利飞, 向祖权. 水面无人艇多船障碍智能避碰[J]. 大连海事大学学报, 2015, 41 (4): 8–13. MAO Yun-sheng, SONG Li-fei, XIANG Zu-quan. USV more water obstacle boat intelligent collision avoidance[J]. Dalian Maritime University, 2015, 41 (4): 8–13. [4] 王哲. 无人艇自动避碰策略的研究[D]. 大连: 大连海事大学, 2013. WANG zhe. USV automatic collision avoidance strategy research[D], Dalian: Dalian Maritime University, 2013. [5] 吴博. 基于操纵运动特性的海事无人艇自主避碰算法研究[D]. 武汉: 武汉理工大学, 2014. WU bo. Autonomous collision avoidance algorithm based on maneuvering characteristics marine USV[D]. Wuhan: Wuhan University of Technology, 2014. [6] YAN Rujian, PANG Shuo, SUN Hanbing, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application,, 2010, 9 (4): 451–457. DOI: 10.1007/s11804-010-1033-2 [7] CACCIA M, BIBULI M, BONO R, et al. Basic navigation, guidance and control of an unmanned surface vehicle[J]. Autonomous Robots, 2008, 25 (4): 349–365. DOI: 10.1007/s10514-008-9100-0 [8] 陈超, 唐坚. 基于可视图法的水面无人艇路径规划设计[J]. 中国造船, 2013, 54(1): 129–135. CHEN chao, TANG jian. Based on water law USV can view route planning[J]. Shipbuilding of China, 2013, 54(1): 129–135.