﻿ 船舶抗冰碰撞舷侧结构加强方案及优化设计
 舰船科学技术  2017, Vol. 39 Issue (9): 29-34 PDF

1. 泰州学院 船舶与机电工程学院，江苏 泰州 225300;
2. 江苏科技大学 船舶与海洋工程学院，江苏 镇江 212003

Strengthening method and optimization design for a ship′s side to resist ice collision load
ZHANG Miao-rong1, WANG Xiang-kang1, ZHANG Jian2, ZHANG Yi-fei1
1. College of Shipping and Electromechanical Engineering, Taizhou University, Taizhou 225300, China;
2. School of Naval Architecture and Ocean Engineering., Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: In this paper, key technique used in numerical simulation of ship-ice collision was introduced, the collision between the side of a ship’s shoulder and angular ice was taken as computation condition, the necessity for structure strengthen was pointed out in view of the response of its side. Several conventional strengthening methods were proposed on this basis, the mean stress that hull plates in contact region received and the degree of plastic damage of hull structure are contrasted respectively, the problem that still existed and the direction for subsequent strengthening were stated. Finally, two new side structures were designed, one of them was optimized and whose fine performance in resisting ice collision load was verified, relevant conclusions about structural design of ship’s side in resisting ice collision load were obtained.
Key words: collision between ships and ice     ice model     structural strengthening     optimization design
0 引　言

1 碰撞仿真技术 1.1 材料模型

1.2 有限元模型处理

2 船舶舷侧与冰体碰撞结构响应 2.1 计算工况

 图 1 船-冰相对位置 Fig. 1 Relative position of ship-ice
2.2 数值结果及分析

 图 2 接触区域 Fig. 2 Contact area

 图 3 船舶肩部塑性破坏 Fig. 3 Plastic failure of the ship′s shoulder

 图 4 接触区域外板上的平均应力 Fig. 4 Mean stress of shell in contact area
3 舷侧结构常规加强方案及耐撞性能研究

3.1 加强方案

3.2 数值结果及分析

 图 5 三种方案的塑性应变 Fig. 5 Plastic strain of three cases

 图 6 三种方案外板接触区域的平均应力 Fig. 6 Mean stress of shell in contact area of three cases
4 新型舷侧结构设计及耐撞性能研究

4.1 新型舷侧结构

 图 7 肋骨剖面形状 Fig. 7 Section shape of frame
4.2 数值结果及分析

 图 8 新型舷侧结构的塑性应变 Fig. 8 Plastic strain of new side structure

 图 9 两种方案外板接触区域的平均应力 Fig. 9 Mean stress of shell in contact area of two cases
4.3 结构优化措施及建议

 图 10 优化前后舷侧内部各构件的塑性应变 Fig. 10 Plastic strain of inner components before and after optimization

5 结　语

1）在本文所述保持所增加构件重量一定的情况下，针对棱角冰对油船舷侧的破坏，增设横向构件比增设纵向构件更加有效。

2）新型舷侧结构将所加构件更加均匀分布在外板接触区域内，避免了外板在很小的区域单独抵抗外载，使得外板的应力状态更加稳定，产生的塑性应变更小。对比 2 种新型舷侧结构可知，H形肋骨结构形式耐撞性能优于X形。

3）鉴于冰体材料、形状的特殊性，将缩小舷侧结构中各类构件所处的应力状态和应变情况的差距作为对其进行优化的目标之一十分必要，考虑并解决该问题，可以达到合理利用钢材、提高结构抗冰碰撞性能的目的。

 [1] RECLDING K A. Mechanics of minor ship collision [J] Impact Engineering, 1983, 1 (3): 281–299. [2] 江华涛. 船舶碰撞与缓冲船艏结构研究[D]. 上海: 上海交通大学, 2002. [3] 徐秉业, 刘信声. 考虑应变率敏感性的塑性动力学[J]. 机械强度, 1984, 3: 75-83. [4] 王自力. 船舶碰撞损伤机理与结构耐撞性研究[D]. 上海: 上海交通大学, 2000. [5] Zhenhui LIU, Jørgen Amdahl, Sveinung Løset. Plasticity based material modeling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, 2011 : 326–334. [6] SANG GAB LEE J S LEE, Y H BAEK, J K Paik, et al. Structural safety assessment in membrane-type CCS in LNGC under iceberg collision [A], ICSOT, 2009. [7] WANG Bo, YU Han-chang. Ship and ice collison modeling and strength evaluation of LNG ship structure [C]//OMAE2008, shanghai. [8] 杨亮、马骏. 冰介质下的船舶与海洋平台碰撞的数值仿真分析[J]. 中国海洋平台, 2008 . YANG Liang. Numerical simulation analysis for the collision between offshore platform under the sea ice medium[J]. China offshore Platform, 2008 . DOI: 10.3969/j.issn.1001-4500.2008.04.016 [9] 张健、张淼溶、万正权、尹群. 冰材料模型在船-冰碰撞结构响应数值仿真中的应用研究[J]. 中国造船, 2013 . ZHANG Jian. Research on Ice Material Model Applied in Numerical Simulation of Structure Response under Iceberg Collision[J]. Shipbuilding of China, 2013 . DOI: 10.3969/j.issn.1000-4882.2013.01.003 [10] 王自力、张延昌. 基于夹层板的单壳船体结构耐撞性设计[J]. 中国造船, 2008 . WANG Zi-Li. Single Hull Ship Structure Crashworthy Design Based on Sandwich Pannel[J]. Shipbuilding of China, 2008 . DOI: 10.3969/j.issn.1000-4882.2008.01.018