﻿ 细长前锥段超空泡航行器高速入水的载荷数值模拟
 舰船科学技术  2017, Vol. 39 Issue (8): 119-123 PDF

Numerical research on load of a super-cavity vehicle with cone-shaped segment at high-speed water-entry
LU Bing-ju, ZHU Zhu
The 713 Research Institute of CSIC, Zhengzhou 450015, China
Abstract: A model with cone-shaped segment has slender was chosen to be studied in this paper. The impact load of the model was gained in the high-speed water-entry process, through the dynamic mesh technology, and the rule of the impact load are gained in the condition that vent or not at different velocity. The result shows that the axial load can be reduced effectively by ventilation, but for normal load, load shedding also need consider the diameter of the cavitator.
Key words: supercavitating vehicle     high-speed water-entry     dynamic mesh     ventilation     load shedding
0 引　言

1 计算模型 1.1 动网格模型

 ${h_{\max }} > (1 + {\alpha _s}){h_{ideal}}$

 ${h_{\min }} < {\alpha _c}{h_{ideal}}$

1.2 Mixture模型

 $\frac{\partial }{{\partial t}}({\rho _m}) + \nabla \cdot ({\rho _m}{{{v}}_{{m}}}) = 0{\text{。}}$

1.3 流场-弹道耦合算法

 图 1 流场-弹道耦合计算流程 Fig. 1 Calculation flow diagram of flow field-ballistic coupling
2 计算区域及网格划分 2.1 计算对象

 图 2 计算对象 Fig. 2 Computing object
2.2 计算区域及网格划分

 图 3 计算区域及边界条件设置 Fig. 3 Calculated zone and boundary condition

 图 4 通气口边界条件 Fig. 4 Vent boundary condition

 图 5 网格划分 Fig. 5 Grid dividing
3 仿真结果与分析

 图 6 不同速度与通气条件下的弹体受力曲线 Fig. 6 Hydro-dynamic parameter
3.1 通气对入水冲击过载的影响

1）通气对轴向冲击载荷的影响

2）通气对法向冲击载荷的影响

3）通气对俯仰力矩的影响

3.2 空化器直径对入水冲击载荷的影响

 图 7 受力参数对比 Fig. 7 Hydro-dynamic parameter

4 结　语

1）具有细长前锥段的超空泡航行器在高速入水时，可以有效缓冲冲击过载，比常规的鱼雷、导弹等钝头体能耐受更高的入水速度；2）通气可以有效地降低轴向载荷，过载降幅可达38%以上，但是通气对降低入水初期的抬头力矩峰值作用不大；3）通气对法向过载的降载效果与速度有关，速度较低时有很好地降载效果，但在很高速度时，不但不能降载而且会使过载大幅度增加；4）增大空化器能够降低法向过载，但由此引入的轴向载荷要大于通气的降载。

 [1] ROCK G, JONATHAN E. Submersible Aircraft Concept Design Study. Naval Surface Warfare Center. [2] 夏斌, 陈震, 肖熙. 弹性平底海洋结构物入水冲击的仿真分析[J]. 中国海洋平台, 2005 : 2. XIA Bin, CHEN Zhen, XIAO Xi. THE SIMULATION ANALYSIS OF THE SLAMMING OF ELASTIC FLAT-BOTTOM MARINE STRUCTURE[J]. Chinese Ocean, 2005 : 2. [3] 陈小平, 滕蓓, 张晓杰, 等. 二维楔形体入水砰击的数值仿真[J]. 舰船科学技术, 2010. 1: 120-123. CHEN Xiao-ping, TENG Bei, ZHANG Xiao-jie, et al. Num erical simulation aboutwater entry of 2D wedge bodies[J]. Ship Science and Technology, 2010. 1: 120-123. [4] 卢炽华, 郑际嘉. 刚性细长柱体倾斜姿态落水冲击的附加质量法[J]. 华中理工大学学报, 1996, 24 (8): 89–93. LU Chi-hua, ZHENG Ji-jia. A study of water impact against a rigid slender cylinder falling obliquely with the added masses method[J]. Journal of Huazhong University of Science and Technology, 1996, 24 (8): 89–93. [5] 江松青, 李永池, 陈正翔. 侧向不均匀冲击下环向加筋圆柱壳的动力响应[J]. 计算力学学报, 2001, 18 (4): 443–448. JIANG Song-qing, LI Yong-chi, CHEN Zheng-xiang. Dynamic response of ring-stiffened cylindrical shells under non-uniform lateral impact[J]. Chinese Journal of Computational Mechanics, 2001, 18 (4): 443–448. [6] XU L, TROESCH A W, PETERSON R. Asymmetric hydrodynamic impact and dynamic response of vessels[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121 (2): 83–89. DOI: 10.1115/1.2830082 [7] BATTISTIN D, IAFRATI A. A numerical model for the jet flow generated by water impact[J]. Journal of Engineering Mathematics, 2004, 48 : 353–374. DOI: 10.1023/B:engi.0000018173.66342.9f [8] PARK M, JUNG Y, PARK W. Numerical study of the impact force and ricochet behaviour of high speed water entry bodies[J]. Computers & Fluids, 2003, 32 : 939–951. [9] 王永虎, 石秀华, 李文哲, 李强. 斜入水高速冲击的理论建模及缓冲分析[J]. 机械科学与技术, 2008, 27 (6): 766–769. WANG Yong-hu, SHI Xiu-hua, LI Wen-zhe, LI Qiang. Modeling and cushioning analysis of oblique water entry with high velocity[J]. MechanicalScience and Technology for Aerospace Engineering, 2008, 27 (6): 766–769. [10] 袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响[J]. 应用力学学报, 2015 (1): 11–16. YUAN Xu-long, ZHU Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry[J]. Chinese Journal of Applied Mechanics, 2015 (1): 11–16. DOI: 10.11776/cjam.32.01.A001 [11] 袁绪龙, 张宇文. 水下高速航行体典型空化器多相流CFD分析[J]. 弹箭与制导学报, 2005, 25 (1): 53–59. YUAN Xu-long, ZHANG Yu-wen. Multi-phase CFD analysis of typical cavitator for high-speed supercavitatig underwater vehicle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25 (1): 53–59.