﻿ 材料和衬套厚度对水润滑阶梯腔尾轴承力学性能有限元分析
 舰船科学技术  2017, Vol. 39 Issue (8): 64-69 PDF

The mechanical analysis of material and bearing bushing thickness of water lubricated ladder cavity stern bearing by finite element
WANG Jian, WANG You-qiang, FAN Xiao-meng, WANG Tao
Qingdao University of Technology, School of Mechanical Engineering, Qingdao 266520, China
Abstract: Setting up different material and different thickness of the liner of water lubricated ladder dynamic and static pressure cavity stern bearing three-dimensional model, and analyzing mechanics performance by Workbench software. The results show that bearing material and thickness of the liner have an influences on the stern bearing larger mechanical properties. When the stern bearing outer ring material is 45#steel, and bush material is hard rubber, and bearing has good mechanical properties of the flexible and optimal; The rubber layer thickness of 20 mm, not only has good mechanical properties, but also can save cost, when designing the stern bearing structure.
Key words: ladder cavity     the stern bearing     mechanical     bearing bushing thickness     finite element
0 引　言

1 水润滑动静压尾轴承工作原理

 图 1 动静压轴承工作原理图 Fig. 1 Working principle of the static pressure bearing
2 尾轴承模型结构 2.1 模型的基本参数和创建

 图 2 六腔艉轴承剖面图 Fig. 2 Six cavity stern bearing

 图 3 六腔尾轴承平面图 Fig. 3 Six cavity stern bearing planar graph
2.2 三维实体模型的导入

 图 4 尾轴承实体模型 Fig. 4 Stern bearing entity model
3 有限元仿真分析及结果 3.1 有限元仿真分析过程

 图 5 尾轴承三维模型网格划分图 Fig. 5 Stern bearing mesh model figure
3.2 不同材料尾轴承的力学性能

3.3 不同衬套厚度尾轴承的力学性能

 图 6 不同橡胶层厚度艉轴承应力图 Fig. 6 Different thickness of rubber layer stern bearing stress

 图 7 不同橡胶层厚度艉轴承应变图 Fig. 7 Different thickness of rubber layer stern bearing strain

 图 8 不同橡胶层厚度尾轴承位移图 Fig. 8 Different thickness of rubber layer stern bearing displacement

4 结　语

1）轴承的材料和衬套厚度对尾轴承的力学性能有比较大的影响，影响着应力、应变和位移的分布，并且呈现出各自特有的规律。

2）从应力、应变和位移角度综合分析，当尾轴承的外圈材料是45#钢，衬套材料为硬橡胶时，此时的最大应力值最小，且轴承具有较好的柔性，具有最优的力学性能。

3）在设计尾轴承橡胶层厚度时，可以将橡胶层厚度选为20 mm，不仅能够节省成本，还具有最佳的力学性能。

 [1] 杨建玺, 周浩兵, 崔凤奎. 液体动静压轴承油腔结构对承载特性的影响[J]. 河南科技大学学报: 自然科学版, 2012, 33 (5): 37–40. YANG Jian-xi, ZHOU Hao-bing, CUI Feng-kui. Effect of oil cavity structure on oil film's load bearing characteristic for hydrostatic bearing[J]. Journal of Henan University of Science & Technology, 2012, 33 (5): 37–40. [2] 伍良生, 等. 带过渡深腔的动压轴承的优化设计与试验[J]. 机械工程学报, 2006, 42 (11): 144–149. Liangsheng W U. OPTIMIZATION DESIGN AND EXPERIMENT OF JOURNAL BEARING WITH DEEP TRANSITION CAVITY[J]. Journal of Mechanical Engineering, 2006, 42 (11): 144–149. DOI: 10.3321/j.issn:0577-6686.2006.11.023 [3] 杨俊, 王隽, 周旭辉, 等. 水润滑橡胶轴承结构设计[J]. 舰船科学技术, 2011 (8): 103–107. YANG Jun, WANG Jun, ZHOU Xu-hui, et al. Design of the structure of water lubricated rubber bearing[J]. ship science and technology, 2011 (8): 103–107. [4] 张杰, 郭宏升, 牛犇, 等. 水润滑高速动静压滑动轴承数值模拟[J]. 农业机械学报, 2008, 39 (6): 159–162. ZHANG Jie, GUO Hung-sheng, NIU Ben, et al. Water lubrication of high speed dynamic static pressure sliding bearing numerical simulation[J]. Journal of agricultural machinery, 2008, 39 (6): 159–162. [5] 王芳芳, 陈渭, 张友峰. 新型水润滑动静压高速主轴轴承的流场模拟[J]. 润滑与密封, 2010, 35 (12): 28–31. WANG Fang-fang, CHEN Wei, ZHANG You-feng. Flow field simulation of a new type of hydrostatic high speed spindle bearing[J]. lubrication and seal, 2010, 35 (12): 28–31. DOI: 10.3969/j.issn.0254-0150.2010.12.006 [6] 律辉, 王优强, 刘籨丽, 等. 不同板层材料水润滑轴承力学性能有限元仿真[J]. 润滑与密封, 2014 (8): 57–62. [7] 周广武, 王家序, 王战江, 等. 多沟槽水润滑橡胶合金轴承润滑特性研究[J]. 摩擦学学报, 2013, 33 (6): 630–637. ZHOU Guang-wu, WANG Jia-xu, WANG Zhan-jiang, et al. Analysis of Multi-Grooves Water Lubricated Rubber Alloy Bearing Considering the Elastohydrodynamic Lubrication[J]. Mocaxue Xuebao/tribology, 2013, 33 (6): 630–637. [8] 车建明. 静压向心轴承的结构创新设计[J]. 润滑与密封, 2005 (3): 102–104. CHE Jian-ming. A Structure Innovation on the Hydrostatic Journal Bearing[J]. Lubrication Engineering, 2005 (3): 102–104. [9] 邵俊鹏. 基于FLUENT的静压轴承椭圆腔和扇形腔静止状态流场仿真[J]. 润滑与密封, 2007, 32 (1): 93–95. SHAO J. Static Flow Simulation of Hydrostatic Bearing Ellipse and Sector Curve Based on FLUENT[J]. Lubrication Engineering, 2007, 32 (1): 93–95. [10] 陈燕生, 等. 液体静压支承原理和设计[J]. 1980.