﻿ 船舶尾部舱室噪声预报及控制分析
 舰船科学技术  2017, Vol. 39 Issue (8): 22-27 PDF

Research on prediction method and control technology of shipboard aft cabin noise
FENG Bo, GUI Hong-bin, YANG Qun
School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China
Abstract: In this paper, according to the VA one software platform and statistical energy analysis (SEA), a research was studied the noise prediction and control technology of a bulk carrier. By using the statistical energy analysis method in the research process (SEA), based on the verification of correct calculation method. Firstly, according to the new standard, the noise level of 10 main cabin were predicted, compared, and analyzed the reason of the cabin noise may exceed the standard. At the end of this model was studied in three different control methods: the sound absorption, sound insulation and vibration damping technology, and compared the degree of noise reduction in different positions for damping material. Research shows that: the three control methods have significant effect to reduce cabin noise. The conclusion of this paper can as the actual control of the ship cabin noise.
Key words: shipboard cabin noise     statistical energy analysis     high-frequency noise     noise control
0 引　言

1 SEA法的基本理论及数值模型验证 1.1 理论基础

 ${P_{i,in}} = {P_{id}} + \sum\limits_{\begin{array}{*{20}{c}} {j = 1}\\ {j \ne i} \end{array}}^N {{P_{ij}}} = {\omega _i}{\eta _i}{E_i} + \sum\limits_{\begin{array}{*{20}{c}} {j = 1}\\ {j \ne i} \end{array}}^N {(\omega {\eta _{ij}}{E_i} - \omega {\eta _{ji}}{E_j})} {\rm{ = }}\omega \sum\limits_{k = 1}^N {{\eta _{ik}}{E_i}} + \omega \sum\limits_{\begin{array}{*{20}{c}} {j = 1}\\ {j \ne i} \end{array}}^N {{\eta _{ji}}{E_j}} .$ (1)

 ${n_i}(\omega ){\eta _{ij}} = {n_j}(\omega ){\eta _{ji}}{\text{。}}$ (2)

 $A\left[ {\begin{array}{*{20}{c}} {\frac{{{E_1}}}{{{n_1}}}}\\ {\frac{{{E_2}}}{{{n_2}}}}\\ \cdots \\ {\frac{{{E_N}}}{{{n_N}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{P_1}}\\ {{P_2}}\\ \cdots \\ {{P_N}} \end{array}} \right]\frac{1}{\omega },$ (3)

1.2 数值模型及验证

1）主机舱（噪声源舱室）

2）集控室（接受舱室）

 图 1 702所软件验证SEA法的模型 Fig. 1 Model used to verify the SEA method by 702 software

 图 2 VA one软件验证SEA法的模型 Fig. 2 Model used to verify the SEA method by VA one

 图 3 预报计算结果 Fig. 3 Forecast calculation results

 图 4 经验公式平台的计算结果 Fig. 4 Calculation results by the platform of empirical expression

2 某散货船舱室噪声预报分析 2.1 目标船舶SEA模型的建立

 图 5 目标船舶模型子系统缩放图 Fig. 5 Scale map of the subsystem of the target ship model

 图 6 目标船舶模型耦合图 Fig. 6 Coupling model of the target ship
2.2 预报结果及分析

 图 7 31.5～8 000 Hz平均声压级水平云图 Fig. 7 The cloud picture of the average sound pressure level from 31.5 Hz to 8 000 Hz

 图 8 VA one主要舱室预报结果 Fig. 8 The prediction results of main cabins by VA one

1）机舱区域噪声值超标由于在用统计能量法建模时，没有考虑船底龙骨、纵骨、外板加强筋等结构，使得模型在质量和刚度上较有限元模型小了很多，从而造成船体结构振动剧烈，以至增大了声辐射；

2）数值模拟模型并没有考虑船舶的舾装结构，即舱室壁吸声等材料；

3）子系统的内损耗因子以及系统之间的耦合损耗因子这2个参数难以确定，造成了预报结果的误差。

3 舱室噪声控制技术研究

3.1 吸声技术的应用

3.2 隔声技术的应用

 图 9 集控室声压级变化曲线图 Fig. 9 The sound pressure level diagram of the engine control room

3.3 阻尼减振技术的应用

 图 10 自由阻尼和约束阻尼示意图 Fig. 10 The schematic diagram of free damping and constrained damping

 图 11 居住舱室声压级变化曲线图 Fig. 11 The sound pressure level diagram of quarters

 图 12 机舱声压级变化曲线图 Fig. 12 The sound pressure level diagram of the machinery space

 图 13 居住舱室声压级变化曲线图 Fig. 13 The sound pressure level diagram of quarters

4 结　语

1）通过3种方式对比验证，发现预报结果三者之间的误差在3 dB以内，间接证明了本文所用VA one软件可以较准确地对所研究结构进行计算预报。

2）通过应用吸声技术，以及对比VA one软件测得的在附加吸声材料前后各主要舱室预报结果，可以发现在船舶舱室的内部舱壁附加一定厚度的吸声材料，对降低船舶舱室噪声声压级有显著效果。

3）在集控室舱壁外侧粘贴隔声材料更有利于减少空气噪声的影响，从而使集控室噪声水平得以降低。

4）在激励源所在舱室（机舱附近）敷设阻尼材料，机舱等舱室噪声降噪效果不明显，但是其对其他舱室有很明显的降噪效果，且约束阻尼结构比自由阻尼结构对非激励源舱室的噪声控制效果更有优势。

5）在非激励源舱室敷设一定厚度的阻尼材料，对非激励源舱室有很明显的降噪效果。

 [1] 张辉, 张新波. 《船上噪声等级规则》修订案解析及应对措施[J]. 船舶标准化工程师, 2013, 46 (01): 28–29. ZHANG Hui, ZHANG Xin-bo. The Influence on New Ships of Code on Noise Levels On-board Ships[J]. Ship Standardization Engineer, 2013, 46 (01): 28–29. DOI: 10.3969/j.issn.1005-7560.2013.01.019 [2] International Marine Organization (IMO)[J]. Code on noise levels on board ships (IMO A468). 1981: 1. [3] 李卓亮, 季振林. 车客渡船舱室噪声预报与控制[J]. 中国舰船研究, 2014, 9 (5): 93–98, 120. LI Zhuo-liang, JI Zhen-lin. Cabin noise prediction and control of car-passenger ferry[J]. Chinese Journal of Ship Research, 2014, 9 (5): 93–98, 120. [4] 于大鹏, 赵德有, 汪玉. 船舶声学建模和阻尼结构对舱室噪声影响研究[J]. 船舶力学, 2010, 14 (5): 539–548. YU Da-peng, ZHAO De-you, WANG Yu. Influence of damped material and the ship model of acoustic on the ship cabin noise[J]. Journal of Ship Mechanics, 2010, 14 (5): 539–548. [5] 金学之, 吴卫国. 高速船舷外水对舱室噪声传播影响[J]. 船海工程, 2009 (6): 46–48. JIN Xue-zhi, WU Wei-guo. Study on the Out-shipboard Fluid Affecting the Cabin Noise Propagation for High Speed Ship[J]. Ship & Ocean Engineering, 2009 (6): 46–48. [6] 胡忠平. 船体结构噪声的有限元计算分析[J]. 船舶, 2008, 19 (3): 30–33. HU Zhong-ping. Finite element analysis on hull structural noise[J]. Ship & Boat, 2008, 19 (3): 30–33. [7] 杨德庆, 金咸定, 周永青. 浮式生产储油船上层建筑振动噪声数值预报[J]. 上海造船, 2003 (2): 15–19. YANG De-qing, JIN Xian-ding, ZHOU Yong-qing, et al. Numerical Prediction of Vibro-acoustics in Superstructure of FPSO[J]. Shanghai Shipbuilding, 2003 (2): 15–19. [8] 杨群. 某舱室模型高频噪声预报及控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. YANG Qun. High frequency noise prediction and control technology study of certain cabin model[D]. Harbin: Harbin Institute of Technology, 2015. [9] 于大鹏. 应用统计能量分析方法预报船舶舱室噪声[D]. 大连: 大连理工大学硕士论文, 2007. YU Da-peng. Study on the prediction of shipyard cabin noise with statistical energy analysis[D]. Dalian: Dalian University of Technology, 2007. [10] 孙增华, 王丹, 于洋, 等. 船舶舱室噪声的工程预报方法[J]. 船舶工程, 2014, 1 . SUN Zeng-hua, WANG Dan, YU Yang, et al. Engineering Prediction Approach for Shipboard Cabin Noise[J]. Ship Engineering, 2014, 1 . [11] MAGRAB E B. Environmental noise control[M]. John Wiley & Sons, 1975. [12] 俞微, 沈荣瀛. 浮筏隔振系统功率流的实验研究[J]. 振动、测试与诊断, 1996, 16 (2): 44–48. YU Wei, SHEN Rong-ying. Experimental Study of Power Flow of a Raft Vibration-Isolating System[J]. Journal of Vibration. Measurement & Diagnosis, 1996, 16 (2): 44–48.