﻿ 推进轴系回旋振动对船体尾部振动影响分析
 舰船科学技术  2017, Vol. 39 Issue (3): 58-63 PDF

The analysis of propulsion shafting whirling vibration to hull structural vibration
ZHOU Fei-yun
China Classification Society Fuzhou Branch, Fuzhou 350008, China
Abstract: The ship propeller in a non-uniform wake field during the voyage will produce periodic bending moment on the propeller shaft. The lateral moment acts on the propeller propulsion shaft or rotating shaft force the rotating shaft around its static equilibrium curve vibration, which appears whirling vibration phenomena. Serious vibration caused by dynamic bearing shaft whirling amplification reaction force cause hull tail structure vibration. In this paper, find out the main reason of hull structural vibration by whirling vibration calculation and solve the serious hull structural vibration problems through adjustment stern tube bearings and intermediate bearings position., providing a reference for solving a similar hull structural vibration problem.
Key words: hull structure     propulsion shaft     whirling vibration     hull vibration
0 引　言

 图 1 推进轴系布置图 Fig. 1 Layout of propulsion shafting

 图 2 尾部甲板振幅与主机转速曲线图 Fig. 2 Stern deck vibration graph

 图 3 尾部甲板振幅与主机转速曲线图（整改后） Fig. 3 Stern deck vibration graph（rectification）

1 传递矩阵法回旋振动计算模型

 图 4 推进轴系在水平垂直平面的投影图 Fig. 4 Horizontal and vertical projection of shafting

 图 5 轴系正回旋与逆回旋 Fig. 5 Positive and inverse convolution

 $\omega = {\omega _s} + {\omega _n}\text{。}$ (1)

 $\left[ {\begin{array}{*{20}{c}}\!\!\!\!\!{1{\rm{ - m}}{\omega _n}^2{\delta _M}_z} \!\!\!\!\!& {{J_d}{\omega _n}^2{\delta _M}_z} \!\!\!\!\!\!\!&0 &\!\!\!\!\!\!\!\!\! {{J_p}\omega {\omega _n}{\delta _M}_z}\\\!\!\!\!\!\!\!\!\!{{\rm{m}}{\omega _n}^2{\Phi _{wy}}} & \!\!\!\!\!\!\!{{\rm{1 - }}{J_d}{\rm{ }}{\omega _n}^2{\Phi _{Mz}}} \!\!\!\!\!\!\!& 0 & \!\!\!\!\!\!\!\!\!{{\rm{ - }}{J_p}\omega {\omega _n}{\Phi _{Mz}}}\\\!\!\!\!\!0 & {{\rm{ - }}{J_p}\omega {\omega _n}{\delta _M}_z} & \!\!\!\!\!\!{{\rm{1 - }}m{\omega _n}^2{\delta _{Wz}}} &\!\!\!\!\!\! {{\rm{ - }}{J_p}{\omega _n}^2{\delta _M}_z}\\\!\!\!\!\!0 & {{\rm{ - }}{J_p}\omega {\omega _n}{\Phi _{Mz}}} & \!\!\!\!\!\!\!\!\!\!{{\rm{ - }}m{\omega _n}^2{\Phi _{Wz}}} &\!\!\!\!\!\!\!\!\!\!{{\rm{1 - }}{J_d}{\rm{ }}{\omega _n}^2{\Phi _{My}}}\!\!\!\!\!\!\!\!\end{array}} \right] = 0\text{，}$ (2)

 图 6 正常工况回旋振动计算模型图 Fig. 6 Whirling vibration calculation model of normal condition
2 正常工况回旋振动计算分析

 图 7 正常工况叶片次正向回旋振动弯矩、剪切力图 Fig. 7 Whirling vibration moment and shear of normal condition
3 轴承脱空工况回旋振动计算分析

 图 8 轴承脱空工况回旋振动计算模型 Fig. 8 Whirling vibration calculation model of bearing void condition

 图 9 脱空工况叶片次正向回旋振动弯矩、剪切力图 Fig. 9 Whirling vibration moment and shear of bearing Void conditions

4 结　语

 [1] ﻿中国船级社. 船上振动控制指南[S]. 北京: 人民交通出版社, 2000: 102–115. CCS. Guide for vibration control[S], Beijing: China Communications Press, 2000: 102–115. [2] 祁亮, 周瑞平, 崔金环. 中间轴承对船舶轴系回旋振动特性的影响[J]. 造船技术, 2011(04): 35-38, 45. QI Liang, ZHOU Rui-ping, CUI Jin-huan. The effects of Intermediate bearing to whirling t vibration characteristics of ship shafting[J]. Marine Technology, 2011(04): 35-38, 45. [3] 陈锡恩, 高景. 船舶轴系回旋振动计算及其参数研究[J]. 船海工程, 2001(5): 8-11. CHEN Xi-en, GAO Jing. Calculation and vibration parameters of whirling vibration of ship shafting[J]. Ship & Ocean Engineering, 2001(5): 8-11. [4] 夏极, 蔡耀全, 刘金林, 等. 轴承油膜动力特性系数对轴系回旋振动影响[J]. 舰船科学技术, 2016, 38(1): 62-66. XIA Ji, CAI Yao-quan, LIU Jin-lin, et al. The influences of bearing hydrodynamic coefficients for whirling vibration of shafting[J]. Ship Science and Technology, 2016, 38(1): 62-66. [5] 张伟, 吴伟亮. 基于有限元法的气垫船轴系回旋振动特性计算[J]. 舰船科学技术, 2014, 36(10): 37-40. ZHANG Wei, WU Wei-liang. The calculating of whirling vibration characteristics based on the finite element method[J] . Ship Science and Technology, 2014, 36(10): 37-40. [6] 中国船级社. 钢质海船入级规范[S]. 北京: 人民交通出版社, 2012: 1605–1606. CCS. Rules for classification of sea-going steel ships[S]. Beijing: China Communications Press, 2012: 1605–1606. [7] 王建, 陈建伟, 闫方才, 等. 基于ANSYS的轴承磨损对船舶长轴系回旋振动的影响分析[J]. 交通科技, 2016(1): 167-170. WANG Jian, CHEN Jian-wei, YAN Fang-cai, et al. The analysis of bearing wear to long shaft of ship maneuver system based on ANSYS[J]. Transportation Research, 2016(1): 167-170. [8] 张晓东. 尾轴承等效支点位置对轴系回旋振动的影响[J]. 船海工程, 2012(6): 53-56. ZHANG Xiao-dong. The effects of Stern bearing equivalent fulcrum position to whirling vibration of shafting[J]. Ship & Ocean Engineering, 2012(6): 53-56.