﻿ 纳米 SIO<sub>2</sub> 气凝胶毡与高强聚乙烯复合抗弹结构隔热性能研究
 舰船科学技术  2017, Vol. 39 Issue (3): 41-45 PDF

The simulation analysis of composite annor structure heat insulation performance of different thickness of silicate Aero-gel and high strength polyethylene
ZHENG Pan, ZHU Xi, LI Yong-qing, ZHU Zi-xu
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In order to explore the influence of new type composite armor in high temperature fire to protect high strength polyethylene from silicate Aero-gel. And the requirement of silicate Aero-gel for protecting high strength polyethylene from high temperature in A60 standard condition. Designed the sandwich armor structure using different thickness of silicate Aero-gel and high strength polyethylene, which used finite element software Ansys14.0 to analysis the temperature field. and compared the simulation results with experimental results. The results show that :the experimental results and simulation results are in good agreement; the reduce of temperature gradient from the surface toward fire to the surface backward fire indicate the good effect of silicate Aero-gel in temperature compartment; the armor structure to achieve the A60 standard needs a thickness of silicate Aero-gel as 21.8mm.
Key words: thermal protection     silicate Aero-gel     fire     numerical simulation
0 引　言

1 理论分析

 $\frac{{\rm{Q}}}{t} = KA \cdot \frac{{\left( {{T_1} - {T_2}} \right)}}{d}{\text{。}}$

 $\rho c \cdot \frac{{\partial T}}{{\partial t}} = \frac{\partial }{{\partial x}} \cdot \left( {{\lambda _{ij}} \cdot \frac{{\partial T}}{{\partial {x_i}}}} \right){\text{。}}$

2 模型建立 2.1 结构单元设计

 图 1 舱壁结构单元示意图 Fig. 1 Schematic of structure element

2.2 边界条件与初始条件

1）结构的初始温度为室温（25 ℃）弱化周围空气流动影响；

2）忽略结构与空气发生对流换热等现象；

3）在厚度方向上，同等厚度平面的温度等值；

4）前钢板靠近火源侧表面温度近似为火源温度。

 图 2 标准火源温度曲线 Fig. 2 Standard temperature curve of fire
2.3 材料热物理参数

2.4 几何模型

 图 3 平面模型 Fig. 3 2D plane model

3 结果及分析 3.1 计算结果

 图 4 模型 1 计算结果 Fig. 4 Result of model 1

 图 5 模型 2 计算结果 Fig. 5 Result of model 2

 图 6 模型 3 计算结果 Fig. 6 Result of model 3

 图 7 不同时间的温度分布曲线 Fig. 7 Temperature distribution curve of different time

 图 8 不同厚度气凝胶毡的防范温度极限剩余 Fig. 8 The preventing temperature limit of different thickness silicate Aero-gel
3.2 仿真结果与实验结果对比

 图 9 高强聚乙烯表面温度变化曲线 Fig. 9 Temperature curve of high strength polyethylene
4 结　语

1）研究表明：纳米 SiO2 气凝胶毡材料沿厚度方向的温度梯度变化，在其面火层极为陡峭，但在其背火层变得平缓，说明纳米 SiO2 气凝胶毡具有极好的隔热效果。

2）利用 SiO2 气凝胶毡良好的隔热性能和高强聚乙烯良好的抗弹性能，设计了纳米 SiO2 气凝胶毡/高强聚乙烯/纳米 SiO2 气凝胶毡夹芯组合隔热防护结构。

3）通过数值模拟计算分析了热防护结构在 A60 标准火源条件下的温度分布及变化规律特性，并与试验实测情况进行比较分析，结果表明：实测结果与计算结果吻合；通过三点插值计算优化，得出高强聚乙烯免受高温影响的纳米 SiO2 气凝胶毡隔温层厚度约为 21.8 mm。

 [1] ﻿张典堂, 陈利, 孙颖, 等. UHMWPE/LLDPE复合材料层板低速冲击及冲击后压缩性能实验研究[J]. 复合材料学报, 2013, 30: 107–111. ZHANG Dian-tang, CHEN Li, SUN Ying, et al. Low velocity impact and residual compressive strength impact properties of UHMWPE/LLDPE composite laminates [J]. Acta Material Composite Sinica, 2013, 30: 107–111. [2] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟[J]. 高分子材料科学与工程, 2013, 29(11): 79–83. CAI Jun-feng, FU Xiao-zhong, YI Jian-zheng. Anti-explosion experiment and numerical simulation of UHMWPE-PUF composite [J]. Polymer Materials Science and Engineering, 2013, 29(11): 79–83. [3] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J]. 爆炸与冲击, 2015, 10(3): 63–69. HOU Hai-liang, ZHANG Cheng-liang, LI Mao, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 10(3): 63–69. [4] 陈长海, 徐文献, 朱锡, 等. 超高分子量聚乙烯纤维增强层合厚板抗高速钝头弹侵彻的理论模型[J]. 中国舰船研究, 2015, 10(3): 63–69. CHEN Chang-hai, XU Wen-xian, ZHU Xi, et al. Theoretical model for thick ultra-high molecular weight polyethylene fiberreinforced laminates penetrated by high-velocity blunt-nosed projectiles [J]. Chinese Journal of Ship Research, 2015, 10(3): 63–69. [5] 张成亮, 朱锡, 侯海量, 等. 近距空爆下复合抗爆舱壁变形破坏模式试验研究[J]. 振动与冲击, 2014, 33(11): 33–48. ZHANG Cheng-liang, ZHU Xi, HOU Hai-liang, et al. Model tests for deformation and destruction modes of a blast-resistant bulkhead under near distance explosion [J]. Journal of Vibration and Shock, 2014, 33(11): 33–48. [6] 周红兵, 梅志远. 多层复合舰用装甲结构抗高速破片特性比较研究[J]. 材料开发与应用, 2011(4): 1–6. ZHOU Hong-bing, MEI Zhi-yuan. Energy absorption mechanism of MCFS structure impacted by higy velocity FSP [J]. Development and Application of Material, 2011(4): 1–6. [7] 邢哲, 王谋华, 刘伟华, 等. 辐射接枝改性对UHMWPE纤维性能的影响[J]. 高分子材料科学与工程, 2013, 29(10): 36–40. XING Zhe, WANG Mou-hua, LIU Wei-hua, et al. Effect of radiation grafting polymerization on the properties of UHMWPE fiber [J]. Polymer Materials Science and Engineering, 2013, 29(10): 36–40. [8] 石明伟. 船用耐火分隔材料及发展概况[J]. 造船技术, 2005(3): 32–34. [9] 石崇, 李宁. SiO2气凝胶复合保温材料在船舶冷库上的应用[J]. 科技创新导报, 2012(31): 87–88. [10] 谭大力, 宗培. SiC陶瓷和SiO2气凝胶组合结构耐热隔热性能研究[J]. 船舶工程, 2014, 36(3): 103–106. TAN Da-li, ZONG Pei. Research on the thermal insulation property of the SiC ceramic and silicate aero-gel [J]. Ship Engineering, 2014, 36(3): 103–106. [11] ZHANG Dan, ZHANG Xue-jun. Synthesis and charac-terization of metal ophthalo cyanine dye sensitizers[J]. Chenmical Intermediate, 2011(7). [12] 胡靖. 船舶封闭舱室火灾温度分布特性实验研究[D]. 合肥: 中国科学技术大学, 2010. [13] 郑盼, 朱锡, 李永清. SIO2气凝胶毡陶瓷棉高强聚乙烯多层复合抗弹结构隔热性能实验研究[J]. 中国舰船研究, 2016, 11(5): 78-83, 99.