﻿ 轴系轴承不对中夹角误差对其承载特性的影响
 舰船科学技术  2017, Vol. 39 Issue (2): 97-102 PDF

Influence of misalignment angle error on the load-bearing properties of shafting bearing
ZHANG Xin-bao, GU Xing-chen
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: In this paper, the calculation model of the Misalignment angle error of the radial sliding bearing was established. The expression of liquid film thickness in the integrated error included the inclination angle and the offset angle of the shaft neck and the inner hole of the bearing was also derived. The influences of the angle of inclination and the angle of offset on the liquid film pressure distribution, bearing capacity and the additional moment of the bearing were analyzed. The results show that the inclination angle and the offset angle error between the inner hole and the shaft neck, even if the values are below the national standard 3.5×10-4 rad, will still have a significant impact on the load-bearing properties of the bearing. With the increase of the angle error, the minimum film thickness is reduced, the bearing capacity of the bearing is more uneven, the additional moment of the bearing is greatly increased, and effect of shafting alignment is also affected. And it is suggested that the process method of installing the bearing by conforming to the curve axis of the shaft axis to ensure the good lubrication effect and the mechanical properties of the bearing should be considered.
Key words: marine shafting     radial sliding bearing     misalignment angle error     load-bearing properties

1 Reynolds 方程的求解原理

 $\frac{\partial }{{\partial \varphi }}\left( {{H^3}\frac{{\partial P}}{{\partial \varphi }}} \right) + {\left( {\frac{d}{L}} \right)^2}\frac{\partial }{{\partial \lambda }}\left( {{H^3}\frac{{\partial P}}{{\partial \lambda }}} \right) = \frac{{\partial H}}{{\partial \varphi }}\text{。}$ (1)

 $F = \sqrt {{F_x}^2 + {F_y}^2} \approx {F_y}\text{，}$ (11)

 $\left\{ \begin{array}{l} f(\varepsilon ) = \left| {\frac{{W - {F_y}}}{W}} \right| < ERR\text{，}\\ g(\theta ) = \left| {\frac{{{F_x}}}{{{F_y}}}} \right| < ERR\text{。} \end{array} \right.$ (12)

3.2 轴承处的附加力矩

 $\left\{ {\begin{array}{*{20}{l}} \begin{array}{l} \!\!\!\!\!\!\!\!\!\!{M_x} = {\rm{ - }}\int_{ - 1}^1 {\int_0^{2 } {{P_{ij}}\cos (\theta + \varphi )} } \lambda {\rm d}\varphi {\rm d}\lambda \approx \\[5pt] \!\!\!\!{\rm{ - }}\sum\limits_{i = 1}^{m + 1} {\sum\limits_{j = 1}^{n + 1} {{P_{ij}}\cos(\theta \!+\! {\varphi _i})\left[ { \!-\! 1 \!+\! \Delta \lambda \cdot (j \!-\! 1)} \right]} } \Delta \varphi \Delta \lambda \text{，} \end{array}\\[15pt] \begin{array}{l} \!\!\!\!\!\!\!\!\!\!{M_y} = {\rm{ - }}\int_{ - 1}^1 {\int_0^{2 } {{P_{ij}}{\rm sin}(\theta + \varphi )\lambda } } {\rm d}\varphi {\rm d}\lambda \approx \\[5pt] \!\!\!\!{\rm{ - }}\sum\limits_{i = 1}^{m + 1} {\sum\limits_{j = 1}^{n + 1} {{P_{ij}}\sin(\theta \!+\! {\varphi _i})} } \left[ { - 1 \!+\! \Delta \lambda \cdot (j \!-\! 1)} \right]\Delta \varphi \Delta \lambda \text{。} \end{array} \end{array}} \right.$ (13)

 $\left\{ \begin{array}{l} M = \sqrt {{M_x}^2 + {M_y}^2} \text{，}\\ {\varphi _M} = {\rm{arctan}}\frac{{{M_x}}}{{{M_y}}}\text{。} \end{array} \right.$ (14)
3.3 轴承处运转摩擦力的计算

 $F = \int_{ - L/2}^{L/2} {\int_0^x {{\tau _x}{|_{y = h}}{\rm d}A} }\text{，}$ (15)

 ${F_1} \!\!=\!\! \int_{ - L/2}^{L/2} {\int_0^{{x_1}} {{\tau _x}{\rm d}x{\rm d}z} } \!\!=\!\! \int_{ - L/2}^{L/2} {\int_0^{{x_1}} {\left( {\frac{h}{2}\frac{{\partial p}}{{\partial x}} \!\!+\!\! \frac{{\eta U}}{h}} \right){\rm d}x{\rm d}z} }\text{，}$ (16)

 $\begin{split} \\[-12pt] & {F_1} = \displaystyle\int_{ - L/2}^{L/2} {\int_0^{{x_1}} {\left( {\frac{h}{2}\frac{{\partial p}}{{\partial x}} + \frac{{\eta U}}{h}} \right){\rm d}x{\rm d}z} } =\frac{{3\eta UrL}}{{2c}}\\ & \ \displaystyle\int_{ - 1}^1 {\int_0^{{\varphi _1}} {\left( {H\displaystyle\frac{{\partial p}}{{\partial \varphi }}} \right){\rm{d}}\varphi {\rm{d}}\lambda } } + \displaystyle\frac{{\eta UrL}}{{2c}}\int_{ - 1}^1 {\int_0^{{\varphi _1}} {\displaystyle\frac{1}{H}{\rm{d}}\varphi {\rm{d}}\lambda } } = \\ & \ {\rm{ }}\displaystyle\frac{{\eta UrL}}{{2c}}\int_{ - 1}^1 {\int_0^{{\varphi _1}} {\left( {3H\frac{{\partial p}}{{\partial \varphi }} + \frac{1}{H}} \right){\rm d}\varphi {\rm d}\lambda } } \text{，} \end{split}$ (17)

 $\overline {{F_1}} = \frac{{{F_1}}}{{\frac{{\eta UrL}}{{2c}}}}{\rm{ = }}\int_{ - 1}^1 {\int_0^{{\varphi _1}} {\left( {3H\frac{{\partial p}}{{\partial \varphi }} + \frac{1}{H}} \right)d\varphi d\lambda } }\text{。}$ (18)

 $\begin{split} \\[-12pt] \overline {{F_1}} {\rm{ = }}\int_{ - 1}^1 {\int_0^{{\varphi _1}} {\left( {3H \displaystyle\frac{{\partial p}}{{\partial \varphi }} + \frac{1}{H}} \right){\rm d}\varphi {\rm d}\lambda } } \approx \\ \quad \quad \sum\limits_{i = 1}^{{m_\varphi }} {\sum\limits_{j = 1}^{n + 1} {\left( {3{H_i}_j \displaystyle\frac{{{p_{i + 1,j}} - {p_i}_j}}{{\Delta \varphi }} + \frac{1}{{{H_{ij}}}}} \right)} } \Delta \varphi \Delta \lambda \text{。} \end{split}$ (19)

 ${F_2} = \int_{ - L/2}^{L/2} {\int_{{x_1}}^{2 r} {\frac{{\eta U}}{h} \cdot \frac{{{h_1}}}{h}{\rm d}x{\rm d}z} } \text{，}$ (20)

 $\begin{split} \\[-12pt] {F_2} = & \int_{ - L/2}^{L/2} {\int_{{x_1}}^{2 r} {\displaystyle\frac{{\eta U}}{h} \cdot \frac{{{h_1}}}{h}{\rm d}x{\rm d}z} } =\\ & {\rm{ }}\int_{ - 1}^1 {\int_{{\varphi _1}}^{2 } {\displaystyle\frac{{\eta U}}{{Hc}} \cdot \frac{{{H_1}c}}{{Hc}} \cdot \frac{L}{2} \cdot r{\rm d}\varphi {\rm d}\lambda } } =\\ & {\rm{ }}\displaystyle\frac{{\eta ULr}}{{2c}}\int_{ - 1}^1 {\int_{{\varphi _1}}^{2 } {\frac{{{H_1}}}{{{H^2}}}{\rm d}\varphi {\rm d}\lambda } } \text{。} \end{split}$ (21)

 $\overline {{F_2}} {\rm{ = }}\frac{{{F_2}}}{{\displaystyle\frac{{\eta ULr}}{{2c}}}} = \int_{ - 1}^1 {\int_{{\varphi _1}}^{2 } {\frac{{{H_1}}}{{{H^2}}}{\rm d}\varphi {\rm d}\lambda } }\text{，}$ (22)

 $\overline {{F_2}} {\rm{ = }}\int_{ - 1}^1 {\int_{{\varphi _1}}^{2 } {\frac{{{H_1}}}{{{H^2}}}{\rm d}\varphi {\rm d}\lambda } } {\rm{ = }}\sum\limits_{i = {m_\varphi }}^{m + 1} {\sum\limits_{j = 1}^{n + 1} {\frac{{{H_{1(i,j)}}}}{{H_{i,j}^{^2}}}} } \Delta \varphi \Delta \lambda \text{，}$ (23)

 $\overline F = \overline {{F_1}} + \overline {{F_2}} \text{。}$
4 算例分析

 图 3 夹角误差影响下的无量纲液膜压力的等值线图 Fig. 3 The contour map of the dimensionless film pressure under the influence of angle error

 图 4 夹角误差对轴承承载性能的影响 Fig. 4 Influence of angle error on bearing bearing performance

 图 5 不对中夹角误差引起的附加力矩 Fig. 5 The additional torque caused by misalignment angle error

 图 6 轴承不对中夹角误差对轴颈无量纲摩擦阻力的影响 Fig. 6 Effect of misalignment angle error on dimensionless frictional resistance of bearing
5 结语

 [1] ﻿CB/Z 338-2005, 船舶推进轴系校中[S]. CB/Z 338-2005, Ship propulsion shafting alignment[S]. [2] 周继良, 邹鸿均. 船舶轴系校中原理及其应用[M]. . [3] 朱理, 庞福振, 康逢辉. 螺旋桨激励力下的舰船振动特性分析[J]. 中国造船, 2011, 52 (2): 8–15. ZHU Li, PANG Fu-zhen, KANG Feng-hui. Vibration characteristic of a warship subjected to propeller excitation[J]. shipbuilding of china, 2011, 52 (2): 8–15. [4] 孙军, 桂长林, 李震, 等. 计入轴变形导致轴颈倾斜的径向滑动轴承流体动力润滑分析[J]. 机械科学与技术, 2005, 24 (2): 204–207. SUN Jun, GUI Chang-lin, LI Zhen, et al. Hydrodynamic lubrication analysis of misaligned journal bearing caused by shaft deformation[J]. Mechanical Science and Technology, 2005, 24 (2): 204–207. [5] SUN Jun, GUI Chang-lin. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation[J]. Tribology International, 2004, 37 (10): 841–848. DOI: 10.1016/j.triboint.2004.05.007 [6] 贾小俊, 范世东. 考虑轴颈倾斜的径向滑动轴承动态特性研究[J]. 船海工程, 2008, 37 (5): 54–57. JIA Xiao-jun, FAN Shi-dong. Dynamic lubrication characteristics analysis of journal bearing considering misalignment[J]. Ship & Ocean Engineering, 2008, 37 (5): 54–57. [7] PIGGOTT R J S. Bearing troubles traceable to design can be avoided by engineering study[J]. Bearings and lubrication, 1942, 64 : 259–269. [8] BOUYER J, FILLON M. An experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances[J]. Journal of Tribology, 2002, 124 : 313–319. DOI: 10.1115/1.1402180 [9] 张新宝, 吴飞, 董广坤, 等. 一种顺应轴系挠度曲线的轴承孔系布置方法[J]. 船舶标准化工程师, 2015 (1): 52–55. ZHANG Xin-bao, WU Fei, Dong Guang-kun, et al. Layout method of arrangement of bearing holes conforming to deflection curve[J]. Ship Standardization Engineer, 2015 (1): 52–55. [10] 张新宝, 董广坤. 计入推力的轴系合理校中的轴承负荷比优化及轴线设计[J]. 机械科学与技术, 2015, 34 (10): 1517–1520. ZHANG Xin-bao, DONG Guang-kun. Optimization design of load ratio between bearings in rational alignment of propulsion shaft considering propulsion force[J]. Mechanical science and technology, 2015, 34 (10): 1517–1520. [11] 敏政, 王乐, 魏志国, 丁大力. 基于MATLAB技术的滑动轴承油膜压力分布的模拟[J]. 润滑与密封, 2008, 33 (8): 51–57. MIN Zheng, WANG Le, WEI Zhi-guo, et al. Simulation on pressure distribution of sliding bearing based on Matlab technology[J]. Lubrication Engineering, 2008, 33 (8): 51–57. [12] 邱明, 陈龙, 李迎春. 轴承摩擦学原理及应用[M]. 北京: 国防工业出版社, 2012.