﻿ 加肋凹型锥环柱破坏机理研究
 舰船科学技术  2017, Vol. 39 Issue (2): 55-60 PDF

Research on failure mechanics of ring-stiffened concave cone-toroid-cylinder combined shell
MAO Kai-ren, WU Fan, ZHANG Er
Naval Architecture engineering of Naval University of Engineering, Wuhan 430033, China
Abstract: An analysis by using Ansys is performed to study the stress characteristic of the Ring-stiffened concave cone-toroid-cylinder combined shell under static water pressure. Simulated analysis of its failure process is proceeded through arc length method. Research on failure mode and failure mechanics of Ring-stiffened Concave Cone-toroid-cylinder Combined Shell is studied by analysis of the load-displacement curve and load-stress curve of the nodes with maximum displacement, which are from cone, toroid, cylinder and the ribs next to toroid. Reasonable explanation for these phenomenons in the failure process are made that the mid-plane stress of toroid falls back before the destruction and the stress of ribs next to toroid is high.
0 引 言

1 计算模型

 图 1 结构示意图 Fig. 1 Model structure

 图 2 有限元模型示意图 Fig. 2 Finilite element model

2 加肋凹型锥环柱应力特点分析

 图 3 应力沿轴向分布 Fig. 3 Axial pressure distibution

 图 4 弯矩沿轴向分布 Fig. 4 Axial moment distibution

3 加肋凹型锥环柱破坏机理分析 3.1 求解方法

3.2 破坏过程分析

 图 5 载荷-位移 Fig. 5 Load-displacement

 图 6 圆柱壳最大位移点应力-载荷 Fig. 6 Load-displacement of max deformation node in cylinder

 图 7 圆环壳最大位移点应力-载荷 Fig. 7 Load-displacement of max deformation node in toroid

 图 8 圆锥壳最大位移点应力-载荷 Fig. 8 Load-displacement of max deformation node in cone

 图 9 整体位移云图 Fig. 9 Entire deformation

 图 10 局部位移云图 Fig. 10 Partial deformation

 图 11 中面 Mises 应力云图 Fig. 11 Mid-plane Mises stress

 图 12 表面 Mises 应力云图 Fig. 12 Surface Mises stress

3 号肋骨处于锥壳段，其平均应力水平较处于柱壳的 4 号肋骨的应力水平更大，3 号肋骨也先达到屈服状态。在达到极限载荷前，3 号和 4 号肋骨均达到了屈服。

3.3 破坏原因分析

4 结 语

1）静水压力下，加肋凹型锥环柱环壳部分存在应力集中现象，一定范围内环壳应力随外载荷增加而增长较快，环壳变形也较为突出。

2）加肋凹型锥环柱破坏前，环壳、柱壳和锥壳存在应力回落和环壳两端肋骨环向应力高应力等特殊现象。是由于环壳两端肋骨在环壳变形过大后承担了较大部分的环向应力。

3）加肋凹型锥环柱环壳两端的肋骨对外载荷的敏感程度大于相邻壳板，靠近柱壳的肋骨侧向变形较大，靠近锥壳的肋骨径向变形较大，且肋骨较壳板更容易达到屈服状态。

 [1] 郭日修, 吕岩松, 黄加强, 等. 加肋锥-环-柱结合壳试验研究[J]. 船舶力学, 2008, 2 (12): 252–257. GUO Ri-xiu, LV Yan-song, HUANG Jia-qiang, et al. Experimental research on the ring-stiffened cone-toroid-cylinder combination shell[J]. Journal of Ship Mechanics, 2008, 2 (12): 252–257. [2] 王安稳, 郭日修. 锥-环-柱结合壳的应力和稳定性[J]. 中国造船, 1995 (3): 54–61. WAN An-wen, GUO Ri-xiu. Stress and stability for cone-toroid-cylinder combination[J]. Shipbuilding of China, 1995 (3): 54–61. [3] 黄加强, 郭日修. 分区样条等参元方法分析加肋轴对称组合壳[J]. 计算力学学报, 1995, 15 (1): 59–68. HUANG Jia-qiang, GUO Ri-xiu. Sub-region isoparametric spline element analysis of strengthand stability of ring-stiffened combined of revolution[J]. Chinese journal of Computational Mechanics, 1995, 15 (1): 59–68. [4] 白雪飞, 陈昕, 丁锦超, 等. 凹型加肋锥-环-柱结合壳强度的模型试验研究[J]. 船舶力学, 2006, 2 (10): 65–72. BAI Xue-fei, CHEN Xin, DING Jin-chao, et al. Experimental research of the strength of ring-stiffened concave cone-toroid-cylinder combined shell[J]. Journal of Ship Mechanics, 2006, 2 (10): 65–72. [5] 白雪飞, 陈昕, 丁锦超, 等. 加肋轴对称组合壳稳定性的一个特殊问题-肋间壳板"诱导"失稳[J]. 船舶力学, 2007, 11 (5): 768–772. BAI Xue-fei, CHEN Xin, DING Jin-chao, et al. A special problem of the stability of ring-stiffenedcombined shell of revolution-interframe "induced" buckling[J]. Journal of Ship Mechanics, 2007, 11 (5): 768–772. [6] 吴梵, 陈昕, 郭日修. 加肋凹锥-环-柱结合壳结构参数分析[J]. 海军工程大学学报, 2004, 6 (16): 64–69. WU Fan, CHEN Xin, GUO Ri-xiu. Analysis of structural parameters of ring stiffened concave cone-toroid-cylinder combined shell[J]. Journal of Naval University of Engineering, 2004, 6 (16): 64–69. [7] 肖文勇, 黄旎. 不同结构参数的锥环柱结构强度性能分析[J]. 船海工程, 2015 (1): 19–22. XIAO Wen-yong, HUANG Ni. A structural parametric study on the the strength of the cone-toroid-cylindercombined shell[J]. Ship &Ocean Engineering, 2015 (1): 19–22. [8] 郭日修, 吕岩松. 凹型加肋锥-环-柱结合壳局部加强方式研究[J]. 哈尔滨工程大学学报, 2010, 2 (31): 170–176. GUO Ri-xiu, LV Yan-song. Research on local strengthening modes for ring-stiffened concave cone-toroid-cylinder combination shells[J]. Journal of Harbin Engineering University, 2010, 2 (31): 170–176.