﻿ 复合材料上层建筑分段吊装方案力学仿真分析
 舰船科学技术  2017, Vol. 39 Issue (2): 42-47 PDF

Mechanical simulation analysis of the block lifting scheme of composite superstructure
HU Jian, GAO Shuang, ZHU Xiang, LI Tian-yun
School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: To control the deformation and stress of the lifting subsection, the finite element method is used to analyze the composite superstructure subsection and the reasonable lifting plans are put forward. Considering the characteristics of composite materials superstructure, under different constraint conditions, the response of superstructure is studied. To avoid problems of large deformation and stress in the process of lifting, the hoisting structures are modified and reinforced reasonably after calculation. For the four hoisting plans, the strength and rigidity characteristics of the superstructures are calculated correspondingly and the reasonable lifting schemes are chosen. To verify the different lifting schemes, the steel frames which are simplified from the composite superstructure block are calculated. The strength of bolts are checked. Combining with practical engineering, the optimal lifting scheme is given at last.
Key words: composite materials     ship superstructure     block lifting     finite element method
0 引 言

ZHANG J P 等[4]对大型船舶分段吊装方案进行研究，提出船舶分段吊装的工艺要求和注意事项。杨永谦等[5] 计算了上层建筑结构在吊装过程中的变形和应力状态，并与实测值进行了比较，为上层建筑进行整体吊装的可行性提供了依据。钟兴锦[3] 运用有限元分析软件建立船舶分段模型，进行强度分析，将有限元分析结果和理论计算结果进行比较，制定出规范的分段吊装计算方法。张延昌等[6] 利用有限元软件对油船上层建筑结构在自重作用下的响应进行了分析，提出合理有效的结构加强措施。李永正等[7] 以某大型 FPSO 为研究对象，利用有限元软件对其上层建筑整体吊装进行有限元强度分析。但是关于以复合材料为主体的复合材料上层建筑分段吊装研究目前相对较少。

1 复合材料板上层建筑模型 1.1 复合材料上层建筑建模

 图 1 上层建筑示意图 Fig. 1 Schematic diagram of superstructure

 图 2 上层建筑有限元模型 Fig. 2 The FEM model of superstructure
1.2 约束条件及载荷的确定

 图 3 上层建筑分段吊装点平动耦合约束 Fig. 3 The translational coupling constraints of superstructure subsection hoisting point

 图 4 上层建筑分段吊装点的竖直约束 Fig. 4 The vertical constraints of block hoisting point

 图 5 上层建筑分段采用约束方案 1 的应力和位移云图 Fig. 5 The Mises stress and Magnitude displacement nephogram of hoisting plan 1

 图 6 上层建筑分段采用约束方案 2 的应力和位移云图 Fig. 6 The Mises stress and Magnitude displacement nephogram of hoisting plan 2

1.3 加强方案的确定

 图 7 上层建筑分段的加强方案 Fig. 7 The reinforce plan of superstructure subsection

 图 8 上层建筑分段加强后效果图 Fig. 8 The figure of superstructure subsection after strengthened
2 复合材料板上层建筑吊装方案分析计算

 图 9 上层建筑分段吊装方案 Fig. 9 The hoisting plan of superstructure subsection

 图 10 上层建筑分段四种吊装方案下的应力云图及变形云图 Fig. 10 The Mises stress and Magnitude displacement nephogram of superstructure subsection for four hoisting plans
3 上层建筑钢骨架力学性能分析

 图 11 上层建筑分段全钢骨架模型 Fig. 11 The steel skeleton model of block

 图 12 上层建筑分段骨架 4 种吊装方案下的应力云图及变形云图 Fig. 12 The Mises stress and Magnitude displacement nephogram of steel skeleton models for four hoisting plans
4 螺栓强度校核

5 结 语

1）对上层建筑吊装过程而言，自由边会产生较大的变形，因此需要对自由边进行加强，经计算 16 a 槽钢满足要求。

2）针对上层建筑分段，提出了 4 个吊装方案，对比分析应力和变形并考虑最大变形位置，选择了方案 4，为工程实际吊装提供参考。

3）将复合材料板和螺栓结构均简化到钢骨架上，进行偏危险的吊装方案计算，为实际吊装提供进一步参考。实际施工过程中采用本文给出的吊装方案，顺利完成了分段吊装任务。

 [1] SMITH M C. Design of marine structures in composite materials[J]. Theoretical &Applied Mechanics, 1990, 6 (1): 293–310. [2] HE Kai. Numerical analysis for hull strength and delamination damage of composite marine structures[M]. Shanghai: Shanghai Jiao Tong University, 2012. [3] 钟兴锦. 船舶分段吊装的计算及其有限元分析[D]. 大连:大连理工大学, 2013. ZHONG Xing-jin. The calculation and finite element analysis of ship block's lifting[D]. Dalian:Dalian University of Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013201545.htm [4] ZHANG J P, TU L H. Research on combined lifting conceptual design for large-scale ship[J]. Advanced Materials Research, 2011, 295 : 473–476. [5] 杨永谦, 黄贻平, 陈超核. 29000 t货船上层建筑整体吊装变形及应力计算[J]. 武汉交通科技大学学报, 1994, 03 : 301–306. YANG Yong-qian, HUANG Yi-ping, CHEN Chao-he. Calculation of deformation and stresses of 29000 t cargo ship's superstructure in integral assembly[J]. Journal of Wuhan Transportation University, 1994, 03 : 301–306. [6] 张延昌, 王自力, 罗广恩. 船舶上层建筑整体吊装强度有限元分析[J]. 船舶工程, 2006 (3): 62–65. ZHANG Yan-chang, WANG Zi-li, LUO Guang-en. FE analysis of the complete lifting and mounting strength of ship superstructure[J]. Ship Engineering, 2006 (3): 62–65. [7] 李永正, 曹轶, 窦培林, 等. 基于FPSO上层建筑不同吊装方案的变形控制研究[J]. 舰船科学技术, 2015 (1): 29–33. LI Yong-zheng, CAO Yi, DOU Pei-lin. Research on numerical simulation of superstructure integral hoisting of FPSO[J]. Ship Science and Technology, 2015 (1): 29–33. [8] 李鹏, 杨亮, 冯朝闻, 等. 船舶焊接重量控制的研究与应用[J]. 金属加工(热加工), 2015 (10): 45–48. LI Peng, YANG Liang, FENG Zhao-wen, et al. The research and application of weight control of ship welding[J]. Metal Processing (thermal processing), 2015 (10): 45–48. [9] 中国船级社.船体结构强度直接计算[S].北京:人民交通出版社, 2001. CCS. Direct calculation of hull structural strength[S]. Beijing:China Communications Press, 2001.