﻿ 电解海水计算在船体清污中的应用研究与仿真分析
 舰船科学技术  2017, Vol. 39 Issue (1): 109-113 PDF

Electrolytic seawater computing research and simulation analysis in the application of hull clean-up
ZHANG Xi-zhu, ZHAO Jin-an
Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
Abstract: Current hull clean-up method for water pollution is larger, and the need to change regularly, cost is larger, so it will soon be electrolytic water calculation used in the hull clean-up, analyzed the principle of electrolytic seawater computing application in hull clean-up, using electrolytic cell to clean-up of hull, electrolytic seawater calculation applied to hull clean-up equipment process, the water from sea water pump imported electrolysis cell, through cell exports into the separating tank, to the trash rack, the cooling water pump from the water tank of inhalation and mixture of sea water, electrolyte transport to the sea water cooling system, prevent the biofouling on the hull.Gives the mathematical model of electrolyzer, reduce the polarization potential, and determine the electrode material, reduce the ohmic drop to the electrolytic bad influence, reduce Pcl2 and PH2, through cell mathematical model to solve the related problems in aluminum reduction cell's structure, design the excellent performance of cell.The simulation results show that the proposed method was carried out on the hull clean-up, clean-up effect is good, in the case of RuO2 content is 30%, the electrode performance is the highest.
Key words: electrolytic seawater calculation     hull clean-up     electrolytic cell
0 引 言

1 电解海水计算在船体清污中的应用原理

 图 1 电解海水反应示意图 Fig. 1 Electrolytic water reaction schematic diagram

 $2{\rm{C}}{{\rm{l}}^-} \to {\rm{C}}{{\rm{l}}_2} \uparrow + 2{\rm{e}}\text{，}$ (1)
 $4{\rm{OH}} \to {{\rm{O}}_2} \uparrow + 2{{\rm{H}}_2}{\rm{O}} + 4{\rm{e}}\text{，}$ (2)

 ${\rm{C}}{{\rm{l}}_2} + {{\rm{H}}_2}{\rm{O}} \to {\rm{HClO}} + {\rm{HCl}}\text{，}$ (3)

 $2{{\rm{H}}^ + } + 2{\rm{e}} \to {{\rm{H}}_2} \uparrow\text{，}$ (4)
 ${\rm{N}}{{\rm{a}}^ + } + {\rm{O}}{{\rm{H}}^{-1}} \to {\rm{NaOH}}\text{，}$ (5)

 $2{\rm{NaOH}} + {\rm{MgC}}{{\rm{l}}_2} \to {\rm{Mg}}{\left( {{\rm{OH}}} \right)_2} \downarrow + 2{\rm{NaCl}}\text{，}$ (6)

 ${\rm{HClO + NaOH}} \to {\rm{NaClO + }}{{\rm{H}}_2}{\rm{O}}\text{。}$ (7)

2 电解海水计算在船体清污中的应用

2.1 电解海水计算应用于船体清污的基本流程和装置

 图 2 电解海水计算应用于船体清污的装置流程图 Fig. 2 Device flow chart of Electrolytic water calculation applied to hull clean-up

2.2 电解槽的数学模型

 $V = \frac{{RT}}{{2F}}\ln \frac{{{P_{{\rm{C}}{{\rm{l}}_2}}} \cdot {{\rm{P}}_{{{\rm{H}}_2}}} \cdot {{\left[ {{\rm{O}}{{\rm{H}}^-}} \right]}^2}}}{{\left[ {{\rm{C}}{{\rm{l}}^-}} \right]}} + {\eta _{{\text{极化}}}} + {\eta _{{\text{欧}}}} + {\eta _{{\text{浓差}}}}\text{，}$ (8)

2.2.1 降低极化电位η极化，确定电极材料

2.2.2 降低欧姆降η 对电解糟的影响

η 不但能够消耗能量，而且可使产氯量、电流效率逐渐减少，甚至导致电解槽无法正常运行。η 主要取决于海水的电导率、电极间隔和 Mg(OH)2 和 Ca(OH)2 沉积物 3 个因素。

2.2.3 减少 ${\rm P_{C{l_2}}}$ 和 ${\rm P_{{H_2}}}$

3 实验结果与分析 3.1 实验环境分析

 图 3 20 万吨油船的全套装置图 Fig. 3 Full set equipment drawing of 200000 tons oil tanker

3.2 船体清污性能分析

 图 4 未进行清污处理的船体 Fig. 4 Hull without clean-up

 图 5 改进方法清污结果 Fig. 5 Clean-Up results of improved method

 图 6 金属电解方法清污结果 Fig. 6 Clean-Up results of metal electrolytic method

3.3 RuO2 含量对电极性能的影响

 图 7 RuO2 含量对电极析氯极化曲线的影响 Fig. 7 Influence of RuO2 content to electrode chlorinepolarization curve

 图 8 RuO2 含量对电极析氧极化曲线的影响 Fig. 8 Influence of RuO2 content to Oxygen electrodepolarization curve

4 结 语

 [1] 李军威, 田俊杰, 马光皎. 电解防污技术及其实际应用情况探析[J]. 全面腐蚀控制, 2015, 29 (10):44–47. LI Jun-wei, TIAN Jun-jie, MA Guang-jiao. Electrolytic anti-fouling system and actual applying cases analysis[J]. Total Corrosion Control, 2015, 29 (10):44–47. [2] 安兴杰, 傅瑛, 刘馨. 新型自抛光海洋防污涂料的制备与性能测试[J]. 青岛大学学报: 工程技术版, 2015, 30 (2):67–74. [3] 沙长源, 蔡萍. 多抽样率原理在舰船振动信号分析中的应用与研究[J]. 电子设计工程, 2015, 23 (20):110–113. SHA Chang-yuan, CAI Ping. Multi-rate spectrum octave analysis of ship vibration[J]. Electronic Design Engineering, 2015, 23 (20):110–113. [4] 兰志刚, 李新仲, 肖钢, 等. 海上核电船海水冷却系统的防腐防污问题[J]. 全面腐蚀控制, 2015, 29 (11):55–57. LAN Zhi-gang, LI Xin-zhong, XIAO Gang, et al. Fouling and corrosion prevention for seawater cooling system of offshore floating nuclear power plant[J]. Total Corrosion Control, 2015, 29 (11):55–57. [5] 吴贵德, 庞万春, 姚建红, 等. 电解氯化系统投入时段的研究[J]. 东北电力技术, 2014, 35 (1):48–50. [6] 巴淼, 张占平, 齐育红. 甲基硅油对有机硅防污涂层表界面特性的影响[J]. 材料工程, 2015, 43 (4):59–65. BA Miao, ZHANG Zhan-ping, QI Yu-hong. Influence of methyl silicone oil on surface and interfacial properties of silicone antifouling coatings[J]. Journal of Materials Engineering, 2015, 43 (4):59–65. [7] 倪余伟, 董建民, 张松. 浮码头钢趸船防腐涂装体系研究[J]. 装备环境工程, 2015 (2):110–115. [8] 付宜风, 白秀琴, 袁成清, 等. 基于仿生的船体防污减阻协同作用及其进展[J]. 舰船科学技术, 2014, 36 (9):7–12. FU Yi-feng, BAI Xiu-qin, YUAN Cheng-qing, et al. Synergistic effect and progress of ship antifouling and drag reduction based on bionics[J]. Ship Science and Technology, 2014, 36 (9):7–12. [9] 丁锐, 李相波, 王佳, 等. 冷喷涂Cu-Cu2O涂层防污机理研究——机理讨论[J]. 涂料工业, 2014, 44 (7):5–12. [10] 任润桃, 梁军. 海洋防污涂料发展现状与研究趋势[J]. 材料开发与应用, 2014, 29 (1):1–8. REN Run-tao, LIANG Jun. Marine antifouling coatings: development and trends[J]. Development and Application of Materials, 2014, 29 (1):1–8.