﻿ 船舶泵阀移水系统水锤抑制方法研究
 舰船科学技术  2017, Vol. 39 Issue (1): 96-99 PDF

Research on method of water hammer suppression for marine moving water system by pump and valves
LI Bin, CAI Biao-hua, YU Jian, ZHANG De-man
Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: The method of water hammer suppression of the marine moving water system by pump and valves was studied through transient simulation analysis of Flowmaster. The results show that when the valve is closed rapidly, there is an obvious water hammer in the system. Extend the valve closing time and the two stage closure strategy can be used to effectively suppress the impact of water hammer in the system; the closer of control valve from the pump, the water hammer suppression effect was better. Pipeline installation of energy storage components can also effectively inhibit the water hammer.
Key words: transient simulation     moving water by pump and valves     water hammer suppression
0 引 言

1 水锤基本理论

 $\Delta p = \rho a\Delta v\text{。}$ (1)

 $a = \sqrt {\frac{1}{{\rho (\frac{1}{k} + \frac{{{\rm d}\varPhi }}{{tE}})}}} \text{。}$ (2)

2 船舶泵阀移水管路水锤数值模拟 2.1 系统模型

 图 1 船舶泵阀移水管路系统示意图 Fig. 1 Schematic diagram of marine moving water system by pump and valves
2.2 仿真模型

Flowmaster 是全球著名的流体系统仿真分析平台，以其高效的计算效率，精确的求解能力、便捷快速的建模方式被用户所采用。Flowmaster 擅长对流体管路系统进行整体分析，Flowmaster 同时是面向工程的完备流体系统仿真软件包，对于各种复杂的流体管网系统，都可以利用 Flowmaster 快速有效地建立系统模型，并进行完备的分析。

 图 2 船舶泵阀移水系统模型 Fig. 2 The model of marine moving water system by pump and valves
2.3 模型主要参数设置

2.4 仿真计算

 $S = L/(a\Delta t)\text{。}$ (3)

3 仿真结果分析

3.1 不同关阀时间的系统水锤特性仿真分析

 图 3 不同关阀时间阀前压力曲线 Fig. 3 Curve of pressure at upriver node of valve when the closing valve time is adjustable

 图 4 不同关阀时间阀后压力曲线 Fig. 4 Curve of pressure at downriver node of valve when the closing valve time is adjustable

1） 正常工作时，泵组（件号 4）工作在额定工作点；

2） 阀门突然关闭时，船舶泵阀移水系统存在明显的水锤现象，系统管路冲击压力可能会达到正常工作压力的数倍；

3） 水锤发生过程中，阀门上游节点的水锤冲击大于下游节点；

4） 延长阀门关闭的时间，能显著降低系统中水锤的冲击压力，且水锤压力波的衰减时间明显加快，是比较有效的抑制水锤的方式。

3.2 不同关阀位置的系统水锤特性仿真分析

 图 5 不同关阀位置阀前压力曲线 Fig. 5 Curve of pressure at upriver node of valve when the place of valve is adjustable

 图 6 不同关阀位置阀后压力曲线 Fig. 6 Curve of pressure at downriver node of valve when the place of valve is adjustable

1） 阀门离泵组越远，关闭阀门时系统中水锤冲击越大，由于间接水锤的作用，水锤压力波的衰减时间越长；

2） 阀门离泵组越远，对阀后水锤冲击的抑制效果越好；

3） 考虑到阀门上游节点的水锤冲击大于下游节点，因此系统水锤主要考虑阀前压力的影响。关闭系统阀门时，尽量操作系统中离泵组最近的阀是比较有效的抑制水锤的方式。

3.3 不同关阀曲线的系统水锤特性仿真分析

 图 7 不同关阀曲线阀前压力曲线 Fig. 7 Curve of pressure at upriver node of valve when the closing curve is adjustable

 图 8 不同关阀曲线阀后压力曲线 Fig. 8 Curve of pressure at downriver node of valve when the closing curve is adjustable

3.4 系统水锤其他抑制措施

 图 9 不同关阀曲线阀前压力曲线 Fig. 9 Curve of pressure at upriver node of valve by other methods of water hammer suppression

 图 10 不同关阀曲线阀后压力曲线 Fig. 10 Curve of pressure at downriver node of valve by other methods of water hammer suppression

4 结 语

 [1] 杨丽. 长距离大型区域压力流输水系统水锤防护计算研究[D]. 西安: 长安大学, 2009. YANG Li. The reaserch on the protection of water hammer in large-scale regional, pressure flow and long distance water supply system[D]. Xi’an: Chang’an University, 2009. http://cn.bing.com/academic/profile?id=a1c1666eec530a7e04507c844b73bf39&encoded=0&v=paper_preview&mkt=zh-cn [2] 陈卓, 王中. 输水管路水力计算对水锤防护措施的影响[J]. 西藏大学学报, 2012, 27 (2):116–123. CHEN Zhuo, WANG Zhong. The reaserch on hydraulic calculation of water hammer[J]. Journal of Tibet University, 2012, 27 (2):116–123. [3] 龙侠义. 输配水管线水锤数值模拟与防护措施研究[D]. 重庆：重庆大学, 2013. LONG Xia-yi. Numerical simulation and protection measures of water hammer in transmission and distribution pipeline [D]. Chongqing: Chongqing University, 2013. [4] 刘波. 无负压加压泵站在跨海输水管线中的水锤防护性能研究[D]. 杭州：浙江大学, 2013. LIU Bo. Study on water hammer protection performance of non-negative pressure pumping station in cross sea-water pipeline [D]. Hangzhou: Zhejiang University, 2013. http://cn.bing.com/academic/profile?id=4cd42b0ce25308663c19e6642e9c7106&encoded=0&v=paper_preview&mkt=zh-cn [5] 李良庚, 雷冬梅. 泵站水锤及防护[J]. 机电设备, 2015 (1):37–40. LI Liang-geng, LEI Dong-mei. Prevention of water hammer in pump station[J]. Mechanical and Electrical Equipment, 2015 (1):37–40.