﻿ 一种基于互素阵的孔径扩展方法
 舰船科学技术  2016, Vol. 38 Issue (12): 135-137 PDF

Coprime array as a new method of extended aperture
GUO Tuo, WANG Ying-min, ZHANG Li-chen
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract: In the case of physical array elements number is determined, the estimated rate of target direction can be improved by the method of extended aperture. It is based on coprime theorems and the sensor of the array is non-uniform layout meeting certain rules, the two physical sensors are used to virtual out a new sensor, according to this approach the non-uniform array will be extended to a larger uniform linear array (ULA), then the direction of arrival (DOA) estimation is done. The simulation and water tank experiment results show that the extended aperture method can significantly improve the spatial resolution and get a lower side lobe level. Clearly the method can save physical sensors and reduce the actual project costs, therefore it have a good prospect of engineering application.
Key words: coprime array     extended aperture     direction of arrival estimation
0 引 言

1 互素阵孔径扩展 1.1 互素定理

MN 是互素数，且MN，任给一整数k，0≤kMN，都存在整数mn，使得k =Nm-Mn，其中 0≤m≤2M-1，0≤nN-1。选择同样的mn 同样也可以产生-k，表示负的差。

1.2 孔径扩展

 $S=\{Mnd,0nN-1\}\cup \{Nmd,1m2M-1\}$ (1)

 图 1 互素孔径扩展 Fig. 1 Extended aperture use coprime theorems

2 仿真实验

 图 2 四个目标 DOA 估计对比 Fig. 2 Four target DOA estimation comparison

3 水池实验验证

 图 3 CBF 算法 DOA 估计对比 Fig. 3 CBF algorithm DOA estimation comparison

 图 4 MUSIC 算法 DOA 估计对比 Fig. 4 MUSIC algorithm DOA estimation comparison

4 结 语

 [1] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation , 1986, 34 (3) :276–280. DOI:10.1109/TAP.1986.1143830 [2] STERGIOPOULOS S, SULLIVAN E J. Extended towed array processing by an overlap correlator[J]. The Journal of the Acoustical Society of America , 1989, 86 (1) :158–171. DOI:10.1121/1.398335 [3] 陈建, 王树勋. 基于高阶累积量虚拟阵列扩展的DOA估计[J]. 电子与信息学报 , 2007, 29 (5) :1041–1044. CHEN Jian, WANG Shu-xun. DOA estimation of virtual array extension based on fourth-order cumulant[J]. Journal of Electronics&Information Technology , 2007, 29 (5) :1041–1044. [4] 张利强, 全厚德. 最小冗余线阵的DOA估计[J]. 火力与指挥控制 , 2012, 37 (10) :10–13. ZHANG Li-qiang, QUAN Hou-de. A study on DOA estimation of minimum-redundancy linear arrays[J]. Fire Control&Command Control , 2012, 37 (10) :10–13. [5] VAIDYANATHAN P P, PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing , 2011, 59 (2) :573–586. DOI:10.1109/TSP.2010.2089682