﻿ 变工况下舰用进气系统综合模拟实验台气动特性研究
 舰船科学技术  2016, Vol. 38 Issue (12): 87-93 PDF

1. 大连海事大学 轮机工程学院, 辽宁 大连 116026 ;
2. 中国船舶工业系统工程研究院, 北京 100094

Investigation on the aerodynamic characteristics of the intake system in a marine gas turbine in variable conditions
WANG Jian-hua1,2, WU Wan-yang1, ZHONG Jing-jun1, PAN Tao2
1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China ;
2. Systems Engineering Research Institute of China State Shipbuilding Cooperation, Beijing 100094, China
Abstract: For the sake of aerodynamic resistance characteristic of a new simulation experiment rig for marine gas turbine intake system, in this paper, the aerodynamic characteristics and flow field characteristics were studied by the combination of experimental study and numerical simulation. Aerodynamic parameters were collected when the simulated experiment at the different conditions were done by the experimental system, the numerical simulation of the flow field at the same condition was made and the total pressure loss distribution and aerodynamic resistance characteristic for the different cross sections were analyzed. The results show the main flow of intake system internal flow field at the different conditions keep flow stable and uniform, total pressure loss of different parts allocation is reasonable, the resistance coefficient of the design condition is lowest, the simulation experiment rig has good aerodynamic characteristics.
Key words: gas turbine     intake system     simulation experiment rig     numerical simulation
0 引 言

1 实验系统介绍 1.1 实验设备

 图 1 进气系统实验台结构示意图 Fig. 1 Experimental intake system schematic diagram

1.2 实验原理

 ${\rho _{{\text{空}}}} = 1.296 \times \frac{{{P_0}}}{{101325}} \times \frac{{273}}{{273 + {t_0}}} \text{，}$

 $\Delta {P_\nu } = \frac{{\sum\limits_{{\rm{i}} = 1}^{13} {\left( {{P_{7{\text{总}}i}}-{P_{7{\text{静}}i}}} \right)} }}{{13}} \text{，}$

 $m = {\rho _{{\text{空}}}} \times \sqrt {\frac{{2 \times \Delta {P_\nu }}}{{{\rho _{{\text{空}}}}}} \times {S_{\rm{7}}}} \text{。}$
 图 2 实验件示意图 Fig. 2 Experiment sample schematic diagram

 图 3 截面 7 压力测点布置 Fig. 3 Pressure measuring point of the 7 cross section

 图 4 各截面压力测点布置 Fig. 4 Pressure measuring point of the different cross sections
 $\Delta {P_{{\text{结构}}}} = \frac{{\sum\limits_{i = 1}^n {\left( {{P_{{\text{前总}}i}}-{P_{{\text{后总}}i}}} \right)} }}{n} \text{。}$

 ${V_i} = \frac{{{{\rm{m}}_i}}}{{S'}} \text{，}$

 ${\xi _{\rm{i}}} = \frac{{2 \times \Delta {P_i}}}{{{\rho _{{\text{空}}}} \times V_{\rm{i}}^2}} \text{。}$
1.3 试验过程

1）首先进行试验管道气密性检查，未开启风机时，在管道的连接处用集中强光照射，在另一侧进行透光性检测；在开启风机的情况下，将肥皂水涂抹在管道连接处，观察连接处情况。若气密性不好，通过紧固连接螺栓，并用玻璃胶涂抹缝隙实现整个管道的密封完好；

2）检查各截面皮托管探针阵列连接管路，保证连接完好，启动电子压力扫描阀，打开数据采集系统并校零；

3）启动风机，调节风机频率，观察数据采集系统中各点数据值，排除异常点后方可进行试验；从0.2工况进行试验；

4）完成从 0.2 工况开始，数据稳定 30 s 后进行自动记录，接着完成 0.4，0.6，0.8 和 1.0 工况气动试验；

5）停机并检查。

 图 5 气动测量数据采集及处理系统 Fig. 5 Pneumatic measurement data acquisition and processing system

2 数值模拟方法校核

3 数值模型、网格及参数定义 3.1 数值模型及网格

 图 6 计算域三维建模 Fig. 6 Three dimensional model of calculation domain

 图 7 计算域网格 Fig. 7 Grid of calculation domain

 图 8 消声器网格 Fig. 8 Grid of noise silencer

 图 9 0.2 工况消声器截面 Fig. 9 The cross section of noise silencer part in the 0.2 condition

3.2 参数定义

 $\chi = \frac{{{v'}_1}}{{{v_1}}} \text{。}$

4 计算结果分析 4.1 横向截面结果分析

 图 10 各个工况下横向截面总压损失分布图 Fig. 10 Distribution of the total pressure loss in the horizontal cross section in the different conditions

 图 11 0.2 工况横向截面流线分布图 Fig. 11 The flow characteristic of horizontal cross section in the 0.2 condition
4.2 消声器前后截面结果分析

 图 12 0.2 工况消声器进口 Fig. 12 The inlet cross section of noise silencer part in the 0.2 condition

 图 13 0.2 工况消声器截面 Fig. 13 The cross section of noise silencer part in the 0.2 condition

 图 14 0.2 工况消声器出口截面 Fig. 14 The outlet cross section of noise silencer part in the 0.2 condition
4.3 变工况下性能曲线

 图 15 变工况性能曲线 Fig. 15 Performance curve of variable conditions
5 结 语

1）不同工况下的进气系统总压损失分布虽然在数值上存在差异，但内部流动特性基本一致，主流均匀，气动损失较小且分配合理。

2）在气体流经消声器结构后，虽然出口截面存在明显的高低压力损失区，但气流的出口均匀系数仍维持在较高的数值，气流仍然具有一定的稳定性与均匀性。

3）随着进口气流流量的增加，进气系统的总压损失会随之逐渐增大，但在设计工况下，阻力系数最低，该工况下进气系统具有最好的气阻特性。

4）该新型舰船燃气轮机进气系统模拟实验台设计合理，气阻性能良好，气体总压损失数值较小，基本体现模块化的设计理念，稳定性、精度都较为完善。

 [1] 魏乾星. 舰船用燃气轮机进气滤清器性能数值研究[D]. 大连:大连海事大学, 2012. WEI Qian-xing The numerical simulation of marine moisture separator[D]. Dalian:Dalian Maritime University, 2012. [2] 吉桂明, 李汇文. 船舶燃气轮机技术和应用的展望[J]. 舰船科学技术 , 2000, 22 (5) :36–40. JI Gui-ming, LI Hui-wen. Future prospects of marine gas turbine technology[J]. Ship Science and Technology , 2000, 22 (5) :36–40. [3] KURZKE J. Effects of inlet flow distortion on the performance of aircraft gas turbines[J]. Journal of Engineering for Gas Turbines and Power , 130, 4 :041201. [4] 孙鹏, 于洋, 钟兢军, 等. 船舶进气系统进气特性的非定常研究[J]. 工程热物理学报 , 2010, 31 (4) :577–580. SUN Peng, YU Yang, ZHONG Jing-jun, et al. Unsteady study of admission characteristic of a ship intake system[J]. Journal of Engineering Thermophysics , 2010, 31 (4) :577–580. [5] 石宝龙. 船用燃气轮机进气流场研究[D]. 哈尔滨:哈尔滨工程大学, 2003. SHI Bao-long. Inlet flow field study of marine gas turbine[D]. Harbin:Harbin Engineering University, 2003. [6] 代燚. 低速风洞流场数值模拟与优化设计[D]. 上海:上海交通大学, 2013. DAI Yi. Numerical simulation of low speed wind tunnel and CFD-based optimal design[D]. Shanghai:Shanghai Jiao Tong University, 2013. [7] CHAKER M A, MEHER-HOMJI C B, MEE Ⅲ T. Inlet fogging of gas turbine engines:experimental and analytical investigations on impaction pin fog nozzle behavior[J]. Journal of Engineering for Gas Turbines and Power , 2006, 128 (4) :826–839. DOI:10.1115/1.1808429 [8] BARTH T J, JESPERSEN D C. The design and application of upwind schemes on unstructured meshes[R]. Technical Report AIAA 89-0366, 1989.