﻿ 舰船辐射噪声非线性频谱特征提取与应用
 舰船科学技术  2016, Vol. 38 Issue (12): 65-68 PDF

1. 海军大连舰艇学院 研究生队, 辽宁 大连 116018 ;
2. 海军大连舰艇学院 信息作战系, 辽宁 大连 116018

Extraction and application in nonlinear spectrum feature of ship radiated noise
JIAO Yi-min1, KANG Chun-yu2, ZENG Xiang-xu1
2. Department of Information Operations, Dalian Navy Academy, Dalian 116018, China
Abstract: Classification and recognition of ship radiated noise is always a difficult problem. It is a commonly used method to extract the spectrum features of ship radiated noise. Based on ship radiated noise spectrum characteristics mainly in the low frequency characteristics, in accordance with the principle of sparse decomposition, by constructing complete nonlinear spectral dictionary proposed a kind of ship radiation spectrum features of nonlinear noise extraction method. The record of sea of various types and various conditions of a lot of noise samples are feature extraction, using the nearest neighbor classifier on radiated noise samples were classified recognition experiment. Results show that, nonlinear frequency spectrum feature of the probability of correct classification and recognition than linear spectral characteristics of the correct classification probability.
Key words: spectrum     radiated noise     feature extraction     target recognition     sparse matrix
0 引 言

1 频谱特征提取方法 1.1 非线性频谱特征提取模型

 $y = \left| {A \times s} \right| \text{，}$ (1)

1.2 傅里叶基字典的构造

 ${A_n}\left( {{f_k}} \right) = {e^{\displaystyle\frac{{2\pi j{f_k}n}}{{{F_s}}}}}, n \in \left\{ {0, 1, \cdots N-1} \right\}\text{。}$ (2)

 图 1 傅里叶基字典 Fig. 1 Fourier dictionarie
1.3 非线性频谱字典的构造

 \left\{ {\begin{aligned} & {{A_n}\left( f \right) = {e^{2\pi jfn/{F_s}}}}\text{，}\\ & {f \!=\!-\alpha \!+\! {e^{n \times \displaystyle\frac{{-log\left( {\displaystyle\frac{{{F_s}}}{2} \!+\! \alpha } \right) \!+\! log\left( \alpha \right)}}{N}}} \times \left( {\displaystyle\frac{{{F_s}}}{2} + \alpha } \right)}\text{。} \end{aligned}} \right. (3)

 图 2 两种字典频率随原子序数变化的关系 Fig. 2 The relationship between the frequency of the two dictionaries and the change of atomic number

 图 3 非线性频谱字典 Fig. 3 Nonlinear spectral dictionary

2 实验数据验证 2.1 仿真实验数据验证

 ${{S}}\left( t \right) = \sum\nolimits_{i = 1}^7 {\sin } \left( {\frac{{2\pi {f_i}t}}{{{F_s}}}} \right), \ \ 0 \leqslant {{t}} \leqslant {{N}}-1 \text{。}$

 图 4 两种方法估计的频谱特征 Fig. 4 Two methods for estimating the spectral characteristics

 图 5 两种方法估计的频谱特征（低频放大） Fig. 5 Two methods for estimating the spectral characteristics（Low frequency amplification）

2.2 舰船辐射噪声的非线性频谱分析

 图 6 两种方法估计的频谱特征 Fig. 6 Two methods for estimating the spectral characteristics

 图 7 两种方法估计的频谱特征（低频放大） Fig. 7 Two methods for estimating the spectral characteristics（Low frequency amplification）

2.3 舰船辐射噪声分类识别实验

 图 8 辐射噪声稀疏特征提取与分类识别框架 Fig. 8 Sparse feature extraction and classification recognition framework for radiated noise

3 结 语

 [1] 张岩, 尹力. 主成分分析在舰船辐射噪声分类识别中的应用[J]. 应用声学 , 2009, 28 (1) :20–26. ZHANG Yan, YIN Li. Application of principal component analysis to ship-radiated noise classification and recognition[J]. Applied Acoustics , 2009, 28 (1) :20–26. [2] 赵瑞珍, 王飞, 罗阿理, 等. 基于稀疏表示的谱线自动提取方法[J]. 光谱学与光谱分析 , 2009, 29 (7) :2010–2013. ZHAO Rui-zhen, WANG Fei, LUO A-li, et al. A method for auto-extraction of spectral lines based on sparse representation[J]. Spectroscopy and Spectral Analysis , 2009, 29 (7) :2010–2013. [3] 王本刚, 董大群, 谢松云. 舰船噪声包络谱分析[J]. 交通部上海船舶运输科学研究所学报 , 2001, 24 (2) :125–127. WANG Ben-gang, DONG Da-qun, XIE Song-yun. Analysis of the envelop spectrum of navy vessel's noise[J]. Journal of Shanghai Ship and Shipping Research Institute , 2001, 24 (2) :125–127. [4] 张宇, 刘雨东. 倒谱在舰船辐射噪声特征提取中的应用[J]. 舰船科学技术 , 2009, 31 (2) :84–87. ZHANG Yu, LIU Yu-dong. Cepstrum application in warship radiated noise characteristic extraction[J]. Ship Science and Technology , 2009, 31 (2) :84–87. [5] 沈广楠. 舰船目标识别技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012. SHEN Guang-nan. Research on ship target recognition technology[D]. Harbin:Harbin Engineering University, 2012. [6] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory , 2006, 52 (4) :1289–1306. DOI:10.1109/TIT.2006.871582 [7] 张国琰. 基于稀疏表示的人脸识别[D]. 保定:河北大学, 2012. ZHANG Guo-yan. Face recognition based on sparse representation[D]. Baoding:Hebei University, 2012. [8] 徐勇俊. 基于信号稀疏表示的字典设计[D]. 南京:南京理工大学, 2013. XU Yong-jun. Dictionary design based on signal sparse representation[D]. Nanjing:Nanjing University of Science and Technology, 2013. [9] PATTERSON R D, ROBINSON K, HOLDSWORTH J, et al. Complex sounds and auditory images[M]//CAZALS Y, DEMANY L, HORNER K. Auditory Physiology and Perception. Oxford:Pergamon Press, 1992:429-446.