﻿ 水下航行体垂直发射筒口压力场L/E耦合数值模拟
 舰船科学技术  2016, Vol. 38 Issue (11): 151-155 PDF

1. 中国船舶重工集团公司 第七一三研究所, 河南 郑州 450015 ;
2. 江苏科技大学, 江苏 镇江 212003

L/E coupling numerical simulation of pressure field near launch canister outlet for underwater vehicle vertical launch
ZHANG Xiao-le1, LU Bing-ju1, HU Ren-hai1, YANG Xing-lin2
1. The 713 Research Institute of CSIC, Zhengzhou 450015, China ;
2. Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: The fluid pressure field near canister outlet for underwater-launched vehicle vertical launch was simulated, using a 3D symmetric model based on the coupling of Lagrange structure mesh and Euler fluid mesh. The water horizontal relative motion and the process of vehicle motion in the launch canister were considered in the model. The characteristics of bubble pulsation were achieved through the simulation. The shape of the two primary pressure waves are approximately identical between simulation results and test results. It shows that, simulation model which consider the lateral flow can be more accurate than the model without lateral flow. The research method and its conclusions are good kind of reference to analysis of pressure field near launch canister.
Key words: pressure field near canister outlet     underwater launch     coupling simulation
0 引言

1 控制方程及数值方法 1.1 控制方程

 $\frac{\partial }{{\partial t}}\iiint\limits_{vol} {\rho {\rm d}V} = - \iint\limits_{surf} {\rho (u \cdot n){\rm d}A} \text{；}$

 $\begin{array}{l} \displaystyle\int \!\!\!{\int\limits_{vol}\!\!\! {\int {\rho {u_i}{\rm d}V} } } + \int \!\!\! {\int\limits_{surf} {\rho {u_i}(u \cdot n){\rm d}A = - } } \\ \quad \quad \quad \quad \quad \displaystyle\int\!\!\! {\int\limits_{surf} {p{n_i}{\rm d}A + \int \!\!\! {\int\limits_{surf} {{s_{ij}}{n_i}{\rm d}A} } } } \text{；} \end{array}$

 $\frac{\partial }{{\partial t}}\iiint\limits_{vol} {\rho e{\rm d}V} + \iint\limits_{surf} {\rho e(u \cdot n)} {\rm d}A = - \iint\limits_{surf} {{u_i}p{n_i}} {\rm d}A\text{。}$

1.2 状态方程

 $p \!=\! {a_1}\mu \!+\! {a_2}{\mu ^2} \!+\! {a_3}{\mu ^3} \!+\! ({b_0} + {b_1}\mu \!+\! {b_2}{\mu ^2} \!+\! {b_3}{\mu ^3}){\rho _0}e\text{，}$ (1)

 $p = {a_1}\mu + ({b_0} + {b_1}\mu ){\rho _0}e\text{。}$ (2)

 $p = (\gamma - 1)\rho e\text{。}$ (3)

1.3 耦合算法

2 计算模型 2.1 航行体模型

 图 1 航行体模型 Fig. 1 Model of vehicle
2.2 流场模型

 图 2 计算域及边界条件 Fig. 2 An outline of the computational domain with boundary conditions

 图 3 流场计算网格 Fig. 3 Mesh of fluid field

 图 4 耦合计算固体与流体重叠网格 Fig. 4 Overlap mesh of solid and fluid field in coupling simulation
3 计算结果分析 3.1 含横向流筒口压力计算

 图 5 航行体出筒燃气压力膨胀 Fig. 5 Gas bubble inflate after the vehicle leave the canister

 图 6 筒口燃气过膨胀 Fig. 6 Gas bubble over inflate

 图 7 筒口燃气泡航行体尾部气泡分离 Fig. 7 Vehicle bottom bubble separate from the canister outlet gas bubble
3.2 无横向流筒口压力场计算

 图 8 筒口燃气泡航行体尾部气泡分离（无横流） Fig. 8 Vehicle bottom bubble separate from the canister outlet gas bubble (no lateral flow)
3.3 试验结果对比

 图 9 试验与含横向流计算筒口压力曲线对比 Fig. 9 Comparison between simulation curve (consider lateral flow) and test curve

 图 10 试验与无横向流计算筒口压力曲线对比 Fig. 10 Comparison between simulation curve (no lateral flow) and test curve

4 结语

 [1] 曾强.潜载导弹发射装置筒盖系统CAE研究[D].北京:北京理工大学, 1997. ZENG Qiang. An CAE study on the cover system of submarine-borne missile launcher[D]. Beijing: Beijing Institute of Technology, 1997. [2] 王汉平, 余文辉, 赵恒, 等. 导弹筒盖系统的故障复现及结构改进[J]. 北京理工大学学报 , 2006, 26 (2) :107–111. WANG Han-ping, YU Wen-hui, ZHAO Heng, et al. Fault replay and design modification of missile cover system[J]. Transactions of Beijing Institute of Technology , 2006, 26 (2) :107–111. [3] 王诚, 叶取源, 何友声. 导弹水下发射燃气泡计算[J]. 应用力学学报 , 1997, 14 (3) :1–7. WANG Cheng, YE Qu-yuan, HE You-sheng. Calculation of an exhausted gas cavity behind an under-water launched missile[J]. Chinese Journal of Applied Mechanics , 1997, 14 (3) :1–7. [4] 李杰, 鲁传敬. 潜射导弹尾部燃气后效建模及数值模拟[J]. 弹道学报 , 2009, 21 (4) :6–8. LI Jie, LU Chuan-jing. The model of combustion gas bubble of submarine-launched missile and numerical simulation[J]. Journal of Ballistics , 2009, 21 (4) :6–8. [5] 程少华, 权晓波, 王占莹, 等. 水下航行体垂直发射尾部空泡形态与压力预示方法研究[J]. 水动力学研究与进展A辑 , 2015, 30 (3) :299–305. CHENG Shao-hua, QUAN Xiao-bo, WANG Zhan-ying, et al. Prediction method on trailing cavity shape and pressure of the underwater vehicle in vertical launching[J]. Chinese Journal of Hydrodynamics , 2015, 30 (3) :299–305. [6] 王汉平, 吴菊华. 基于CFD的潜射导弹筒口压力场预测[J]. 弹道学报 , 2008, 20 (4) :73–76. WANG Han-ping, WU Ju-hua. Forecast of pressure field near launch canister outlet for underwater-launched missile based on CFD[J]. Journal of Ballistics , 2008, 20 (4) :73–76. [7] 王汉平, 余文辉, 魏建峰. 潜射模拟弹筒口压力场仿真[J]. 兵工学报 , 2009, 30 (8) :1009–1013. WANG Han-ping, YU Wen-hui, WEI Jian-feng. Simulation of pressure field near canister outlet for underwater-launched emulated missile[J]. Acta Armamentarii , 2009, 30 (8) :1009–1013. [8] 邱海强, 袁绪龙, 王亚东, 等. 潜射导弹筒口气泡发展规律研究[J]. 兵工学报 , 2014, 35 (9) :1510–1514. QIU Hai-qiang, YUAN Xu-long, WANG Ya-dong, et al. Research on the law of development of outlet cavity during the launch of submarine launched missile[J]. Acta Armamentarii , 2014, 35 (9) :1510–1514. [9] 王亚东, 袁绪龙, 覃东升. 导弹水下发射筒口气泡特性研究[J]. 兵工学报 , 2011, 32 (8) :991–995. WANG Ya-dong, YUAN Xu-long, QIN Dong-sheng. Research on the outlet cavity features during the launch of submarine launched missile[J]. Acta Armamentarii , 2011, 32 (8) :991–995. [10] 吴国民, 周心桃, 李俊. 水下爆炸作用下固支平板动态响应分析[J]. 舰船科学技术 , 2013, 35 (4) :25–28. WU Guo-min, ZHOU Xin-tao, LI Jun. Dynamical response of flat plates subjected to underwater explosion[J]. Ship Science and Technology , 2013, 35 (4) :25–28. [11] 张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究[J]. 爆炸与冲击 , 2004, 24 (2) :182–188. ZHANG Zhen-hua, ZHU Xi, BAI Xue-fei. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves , 2004, 24 (2) :182–188.