﻿ 复杂平台下相控阵天线近场快速求解算法研究实现
 舰船科学技术  2016, Vol. 38 Issue (11): 120-124 PDF

1. 海军驻中国舰船研究设计中心军事代表室, 湖北 武汉 430064 ;
2. 中国舰船研究设计中心, 湖北 武汉 430064

Complex platform phasor phased-array antenna near field fast algorithm study realization
YANG Bin1, PING Bi-bo2, SONG Wen-wu2, WANG Chun2
1. Navy Military Representative Office in China Ship Development and Design Center, Wuhan 430064, China ;
2. China Ship Development and Design Center, Wuhan 430064, China
Abstract: This paper proposed the resolution to get near-field of phased array based on high frequency algorithm.The subset of phased array is modeled to obtain the pattern characteristics of single element with taking the coupling into consideration which used the active pattern method. Image source method on the muti-facets was given to get the route of reflected ray. The paper also proposed the real-time spatial region bipartite accelerated method based on facets to accelerate the ray routing process and enhance the effectiveness of the program calculates. The near-field of phased array antenna can be obtained with relatively high accuracy using the resolution.
Key words: phased array antenna     image source method     MPI     real-time spatial region bipartite accelerated method
0 引言

1 阵列天线电磁环境计算建模

1）船用相控阵天线在自由空间的辐射建模。在天线阵元数量超过1 000以上的相控阵天线中，可以近似认为各个天线具有相似的辐射特性，在该建模过程中建立适当大小的子阵列，并使用商业工具计算获取阵元在考虑耦合效应时的远场辐射特性数据。

2）船用相控阵天线的辐射场在复杂结构船体上的传播建模。本文采用高频近似算法，该建模过程旨在通过镜像源法及相关加速手段快速获取射线传播路径。

3）船用相控阵天线在复杂平台下的近场求解。利用阵列天线的近场为阵元远场的特点，首先用GO[5 -7]算法计算得到每个阵元在有复杂结构对象影响下的电磁场，然后使用叠加原理对各个阵元在复杂结构船体影响下的场进行矢量叠加并进行功率校正得到阵列天线的场。本文使用MPI[8 -9]并行计算技术，以实现快速的射线路径搜索。

 图 1 复杂结构平台下的相控阵天线电磁环境求解方案系统流程图 Fig. 1 System flowchart of phased array antenna electromagnetic environment resolution
2 射线寻径的镜像源法

 图 2 镜像源法示意图 Fig. 2 Schematic diagram of image source method

 图 3 多三角面片寻径示意图 Fig. 3 Schematic diagram of routing on muti-facets

 图 4 第1种情况 Fig. 4 The first illegal condition

 图 5 第2种情况 Fig. 5 The second illegal condition

3 基于面片的实时空间区域二分算法

 $\overrightarrow n = \overrightarrow {AB} \times \overrightarrow {AC}\text{。}$ (1)

 $\overrightarrow n \overrightarrow { \cdot AS} > 0\text{。}$ (2)

 $\overrightarrow n \overrightarrow { \cdot AD} < 0 \text{，}$ (3)

 $\overrightarrow n \overrightarrow { \cdot AS} < 0\text{，}$ (4)

 $\overrightarrow n \overrightarrow { \cdot AD} > 0\text{。}$ (5)
 图 6 空间区域划分示意图 Fig. 6 Schematic diagram of real-time spatial region bipartite accelerated method

 $O = M \times N \times (1 + \frac{{n \times {{(n - 1)}^{{T_{\rm max}} - 1}}}}{{{2^{{T_{\rm max}}}}}})$ (6)

 $\eta \approx (1 - \frac{1}{{{2^{{{{T}}_{\rm max}}}}}}) \times 100\% \text{。}$ (7)

 图 7 典型凸多面体结构的快速寻径示意图 Fig. 7 Schematic diagram of fast routing on convex polyhedron structure
 $O = M \times N \times (1 + n)\text{。}$ (8)

4 计算结果及其分析

 图 8 简化飞机模型下的路径搜索计算实例 Fig. 8 Calculation instance of routing under simplified plane model calculated by program in the paper

 图 9 简化飞机模型下的路径搜索FEKO计算实例 Fig. 9 Instance of reflect ray under simplified plane model calculated by FEKO

 图 10 FEKO建立的21元阵列天线模型 Fig. 10 21 elements subset model of phased array antenna setup by FEKO

 图 11 简化飞机模型结构下的阵列天线的电磁环境计算实例 Fig. 11 Calculation instance of phased array antenna electromagnetic environment under simplified plane model

 图 12 简化飞机模型结构下的阵列天线的电磁环境FEKO计算实例 Fig. 12 Instance of phased array antenna electromagnetic environment under simplified plane model calculated by FEKO

 [1] 邵开文, 马运义. 舰船技术与设计概论[M]. 北京: 国防工业出版社, 2005 . [2] 历园园, 翟助群, 李思, 等. 基于高频算法的舰船电磁环境研究[J]. 中国舰船研究 , 2015, 10 (2) :15–21, 34. LI Yuan-yuan, ZHAI Zhu-qun, LI Si, et al. Research on the electromagnetic environment of ships based on the high frequency algorithm[J]. Chinese Journal of Ship Research , 2015, 10 (2) :15–21, 34. [3] 潘龙, 朱志宇. 应用于舰载天线电磁兼容性分析的改进多层快速多极子算法[J]. 中国舰船研究 , 2015, 10 (2) :47–54. PAN Long, ZHU Zhi-yu. An improved MLFMA algorithm for the electromagnetic compatibility analysis of shipboard antennas[J]. Chinese Journal of Ship Research , 2015, 10 (2) :47–54. [4] 郭旸, 王向华, 胡骏. 基于函数语言的并行FDTD算法新实现及其在航空母舰甲板表面电磁场分布问题仿真中的应用[J]. 中国舰船研究 , 2015, 10 (2) :35–39, 54. GUO Yang, WANG Xiang-hua, HU Jun. A new parallel implementation for FDTD algorithm using function languages and its application for simulating field distribution on a ship platform[J]. Chinese Journal of Ship Research , 2015, 10 (2) :35–39, 54. [5] 周文明, 宋建社, 郑永安, 等. 复杂目标电磁散射混合算法[J]. 电波科学学报 , 2007, 22 (5) :884–890. ZHOU Wen-ming, SONG Jian-she, ZHENG Yong-an, et al. A hybrid method for computing high-frequency RCS of complex radar targets[J]. Chinese Journal of Radio Science , 2007, 22 (5) :884–890. [6] 李冬虎.基于KD-Tree的电磁散射高频分析[D].南京:南京理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10288-1014175472.htm [7] 李金星, 江旺强, 张民.基于图形遮挡技术与GO-PO方法的电大复杂目标散射特性分析[C]//中国电子学会微波分会. 2015年全国微波毫米波会议论文集.合肥:中国电子学会, 2015: 4. [8] 刘战合, 何政道, 李莹, 等. 雷达散射截面并行计算中的MPI实现技术研究[J]. 航空计算技术 , 2009, 39 (4) :109–112. LIU Zhan-he, HE Zheng-dao, LI Ying, et al. On MPI implementation of radar cross section parallel computation[J]. Aeronautical Computing Technique , 2009, 39 (4) :109–112. [9] 邹光先.集群环境下基于MPI的并行多层快速多极子方法研究[D].成都:电子科技大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10614-2004128330.htm