﻿ 基于Ansys的自吸离心泵主要结构及装配体的模态分析
 舰船科学技术  2016, Vol. 38 Issue (11): 84-86 PDF

Modal analysis of the main structure and assembly of self-priming centrifugal pump based on Ansys
ZHOU Zhao-hui, LI Guang-yi, WANG Yi-bin
Naval University of Engineering, Wuhan 430033, China
Abstract: The vibration and noise of a self-priming centrifugal pump is caused by many factors, the structure and rigidity of the pump are the two main factors. By the modal analysis of the main structure and assembly of self-priming centrifugal pump we can get its own natural frequencies and mode shapes, and find the weaknesses of the structure and assembly, lay the foundation for structural optimization and adjustment. Based on the 3D model of a marine self-priming centrifugal pump established by UG, this paper completed the whole process from mesh to modal analysis by the software of HyperMesh and Ansys Mechanical APDL, and then analyzed the results. Calculation and analysis results show that there are vulnerabilities in the pump, and measures must be taken to optimize the structure targeted.
Key words: self-priming centrifugal pump     Ansys     modal analysis     structure optimization
0 引言

1 理论基础

 $﻿$\mathit{\boldsymbol{M\ddot u}} + \mathit{\boldsymbol{Ku}} = 0,$$(1) 式中：MK分别为系统的质量和刚度矩阵；üu为系统各节点的加速度和位移向量。 式（1）的解可表示为：  ﻿\mathit{\boldsymbol{u}} = \mathit{\boldsymbol{\varphi }}{e^{j\omega t}} 。$$ (2)

2 模型有限元前处理 2.1 模型简化

 图 1 模型简化前后 Fig. 1 The model before and after simplification
2.2 模型网格划分

2.3 条件与约束设置

3 计算模态分析 3.1 主要零部件模态分析

 图 2 泵体前4阶模态振型图 Fig. 2 The first 4 orders vibration shape of the pump
3.2 自吸泵装配体模态分析

 图 3 装配体前4阶模态振型图 Fig. 3 The first 4 orders vibration shape of the assembly

4 结语

1）除泵体约束状态以外，自吸泵的主要零部件均有较高的模态频率，明显高于电机的激振频率及叶片通过频率，说明零部件具有较高的刚度。

2）在实际工作状态下，受约束的影响，泵体的动态性能有所降低，发生共振的可能性较高。泵体在入口、顶角和蜗壳出口附近存在异常变形，有必要对其进行加固。

3）装配体的模态频率要明显大于约束状态下泵体的模态频率，因此，在约束状态下，装配体的动态性能要明显优于单独的泵体，说明该泵的装配工艺较为合理，可以改善泵的动态性能。

4）装配体的振型以泵体的变形为主，并且与约束状态下的泵体振型相近。泵体结构中存在薄弱之处，有必要根据振型对该泵结构做针对性优化。

 [1] 全国化工设备设计技术中心站机泵技术委员会. 工业泵选用手册[M]. 北京: 化学工业出版社, 2010 : 154 -157. [2] 黄国富, 常煜, 张海民. 基于CFD的船用离心泵流体动力振动噪声源分析[J]. 水泵技术 , 2008 (3) :20–24, 33. [3] 刘君, 袁建平. 带预应力的高速离心泵转子模态分析[J]. 中国农村水利水电 , 2014 (2) :117–121. [4] 付建国.多级离心泵流固耦合动力特性分析[D].扬州:扬州大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11117-1014362647.htm [5] 左能文.钢丝缠绕型陶瓷压砖机主体机架的有限元分析与结构优化[D].南昌:华东交通大学, 2012. ZUO Neng-wen. Finite element analysis and structural optimization of steel wire-wound ceramic press frame[D]. Nanchang: East China Jiaotong University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10404-1012040052.htm [6] 杨凯, 朱春华, 陈明. 模态试验架的动态特性研究[J]. 中国制造业信息化 , 2008 (24) :52–53. YANG Kai, ZHU Chun-hua, CHEN Ming. Study on dynamic characteristics of modal test frame[J]. Manufacture Information Engineering of China , 2008 (24) :52–53. [7] 陈艳锋, 吴新跃, 王基. 船用泵振动模态计算分析研究[J]. 机电产品开发与创新 , 2005, 18 (2) :60–62. CHEN Yan-feng, WU Xin-yue, WANG Ji. Study on the vibration modal analysis of a pump[J]. Development & Innovation of Machinery & Electrical Products , 2005, 18 (2) :60–62.